The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 3, page 973-1015
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLas Vergnas, Michel. "The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives." Annales de l'institut Fourier 49.3 (1999): 973-1015. <http://eudml.org/doc/75373>.
@article{LasVergnas1999,
abstract = {We study the basic algebraic properties of a 3-variable Tutte polynomial the author has associated with a morphism of matroids, more precisely with a matroid strong map, or matroid perspective in the present paper, or, equivalently by the Factorization Theorem, with a matroid together with a distinguished subset of elements. Most algebraic properties of the usual 2-variable Tutte polynomial of a matroid generalize to the 3-variable polynomial. Among specific properties we show that the 3-variable Tutte polynomial of a matroid $M$ pointed by a normal subset can be used to abridge the computation of the 2-variable Tutte polynomial of $M$, and that the 3-variable Tutte polynomial of a matroid perspective $M\rightarrow M^\{\prime \}$ is computationally equivalent to the $r(M)-r(M^\{\prime \})+1$ two-variable Tutte polynomials of the matroids of its Higgs factorization.},
author = {Las Vergnas, Michel},
journal = {Annales de l'institut Fourier},
keywords = {matroid; combinatorial geometry; strong map; matroid perspective; Tutte polynomial; normal subset; Higgs lift; Higgs factorization; lattice of flats; Möbius function; modular flat; basis activity},
language = {eng},
number = {3},
pages = {973-1015},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives},
url = {http://eudml.org/doc/75373},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Las Vergnas, Michel
TI - The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 973
EP - 1015
AB - We study the basic algebraic properties of a 3-variable Tutte polynomial the author has associated with a morphism of matroids, more precisely with a matroid strong map, or matroid perspective in the present paper, or, equivalently by the Factorization Theorem, with a matroid together with a distinguished subset of elements. Most algebraic properties of the usual 2-variable Tutte polynomial of a matroid generalize to the 3-variable polynomial. Among specific properties we show that the 3-variable Tutte polynomial of a matroid $M$ pointed by a normal subset can be used to abridge the computation of the 2-variable Tutte polynomial of $M$, and that the 3-variable Tutte polynomial of a matroid perspective $M\rightarrow M^{\prime }$ is computationally equivalent to the $r(M)-r(M^{\prime })+1$ two-variable Tutte polynomials of the matroids of its Higgs factorization.
LA - eng
KW - matroid; combinatorial geometry; strong map; matroid perspective; Tutte polynomial; normal subset; Higgs lift; Higgs factorization; lattice of flats; Möbius function; modular flat; basis activity
UR - http://eudml.org/doc/75373
ER -
References
top- [1] M. AIGNER, Combinatorial Theory, Springer, 1979. Zbl0415.05001MR80h:05002
- [2] D. BÉNARD, A. BOUCHET, A. DUCHAMP, On the Martin and Tutte polynomial, J. Combinatorial Theory, ser.B, to appear (26 p.).
- [3] T. BRYLAWSKI, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc., 171 (1972), 235-282. Zbl0224.05007MR46 #8869
- [4] T. BRYLAWSKI, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc., 203 (1975), 1-44. Zbl0299.05023MR50 #9631
- [5] T. BRYLAWSKI, A combinatorial perspective on the Radon convexity theorem, Geometriæ Dedicata, 5 (1976), 459-466. Zbl0361.52002MR55 #13340
- [6] T. BRYLAWSKI, The broken-circuit complex, Trans. Amer. Math. Soc., 234 (1977), 417-433. Zbl0368.05022MR80a:05055
- [7] T. BRYLAWSKI, D. LUCAS, Uniquely representable combinatorial geometries, Teorie Combinatorie (vol. 1), B. Serge ed., Accademia Nazionale dei Lincei, Roma, 1976, 83-108. Zbl0392.51007
- [8] T. BRYLAWSKI, J. OXLEY, The Tutte polynomial and its applications, chapter 6 in : White N. (ed.), Matroid Applications, Cambridge University Press, 1992. Zbl0769.05026MR93k:05060
- [9] S. CHAIKEN, The Tutte polynomial of a ported matroid, J. Combinatorial Theory, ser. B, 46 (1989), 96-117. Zbl0614.05017MR90d:05066
- [10] R. CORDOVIL, M. LAS VERGNAS, A. MANDEL, Euler's relation, Möbius functions, and matroid identities, Geometriæ Dedicata, 12 (1982), 147-162. Zbl0476.52010MR83d:05030
- [11] H.H. CRAPO, A higher invariant for matroids, J. Combinatorial Theory, 2 (1967), 406-416. Zbl0168.26203MR35 #6579
- [12] H.H. CRAPO, Möbius inversions in lattices, Arch. Math. (Basel), 19 (1968), 595-607. Zbl0208.29303MR39 #6791
- [13] H.H. CRAPO, The Tutte polynomial, Aequationes Mathematicæ, 3 (1969), 211-229. Zbl0197.50202MR41 #6705
- [14] G. ETIENNE, M. LAS VERGNAS, The Tutte polynomial of a morphism of matroids, III. Vectorial matroids, 19 pp., J. Combinatorial Theory, ser. B, to appear. Zbl1041.05015
- [15] C. GREENE, T. ZASLAVSKY, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs, Trans. Amer. Math. Soc., 280 (1983), 97-126. Zbl0539.05024MR84k:05032
- [16] F. JAEGER, On Tutte polynomials of matroids representable over GF(q), European J. Combinatorics, 10 (1989), 247-255. Zbl0679.05017MR91a:05022
- [17] M. LAS VERGNAS, Matroïdes orientables, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 61-64. Zbl0304.05013MR51 #7910
- [18] M. LAS VERGNAS, Sur les extensions principales d'un matroïde C.R. Acad. Sci. Paris, sér. A, 280 (1975), 187-190. Zbl0302.05025MR51 #5347
- [19] M. LAS VERGNAS, Extensions normales d'un matroïde, polynôme de Tutte d'un morphisme, C.R. Acad. Sci. Paris, sér. A, 280 (1975), 1479-1482. Zbl0327.05034MR54 #7295
- [20] M. LAS VERGNAS, Acyclic and totally cyclic orientations of combinatorial geometries, Discrete Mathematics, 20 (1977), 51-61. Zbl0404.05017MR57 #2957
- [21] M. LAS VERGNAS, Convexity in oriented matroids, J. Combinatorial Theory, ser. B, 29 (1980), 231-243. Zbl0443.05026MR82f:05027
- [22] M. LAS VERGNAS, On the Tutte polynomial of a morphism of matroid, Annals Discrete Mathematics, 8 (1980), 7-20. Zbl0462.05021MR81m:05057
- [23] M. LAS VERGNAS, Eulerian circuits of 4-valent graphs imbedded in surfaces, in: L. Lovász & V. Sós (eds.), Algebraic Methods in Graph Theory, North-Holland, 1981, 451-478. Zbl0472.05043MR83a:05087
- [24] M. LAS VERGNAS, The Tutte polynomial of a morphism of matroids, II. Activities of orientations, in: J.A. Bondy & U.S.R. Murty (eds.), Progress in Graph Theory, Academic Press, 1984, 367-380. Zbl0556.05013MR87j:05057
- [25] G-C. ROTA, On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. für Wahrscheinlichkeitstheorie und verw. Gebiete, 2 (1964), 340-368. Zbl0121.02406MR30 #4688
- [26] R. STANLEY, Modular elements of geometric lattices, Algebra Universalis, 1 (1971), 214-217. Zbl0229.05032MR45 #5037
- [27] R. STANLEY, Acyclic orientations of graphs, Discrete Mathematics, 5 (1973), 171-178. Zbl0258.05113MR47 #6537
- [28] W.T. TUTTE, A contribution to the theory of dichromatic polynomials, Canadian J. Math., 6 (1954), 80-91. Zbl0055.17101MR15,814c
- [29] W.T. TUTTE, The dichromatic polynomial, Proc. Fifth Bristish Combinatorial Conference (Aberdeen 1975), Utilitas Math., Winnipeg 1976, 605-635. Zbl0339.05105MR53 #186
- [30] N. WHITE (ed.), Theory of Matroids, Cambridge University Press, 1986. Zbl0579.00001MR87k:05054
- [31] T. ZASLAVSKY, Facing up to arrangements: face-count formulas for partitions of spaces by hyperplanes, Memoirs Amer. Math. Soc., 154 (1975). Zbl0296.50010MR50 #9603
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.