Curvature flows of maximal integral triangulations
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 4, page 1115-1128
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBacher, Roland. "Curvature flows of maximal integral triangulations." Annales de l'institut Fourier 49.4 (1999): 1115-1128. <http://eudml.org/doc/75374>.
@article{Bacher1999,
abstract = {This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.},
author = {Bacher, Roland},
journal = {Annales de l'institut Fourier},
keywords = {curvature flow; Farey sequence; Farey tree; maximal integral triangulation},
language = {eng},
number = {4},
pages = {1115-1128},
publisher = {Association des Annales de l'Institut Fourier},
title = {Curvature flows of maximal integral triangulations},
url = {http://eudml.org/doc/75374},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Bacher, Roland
TI - Curvature flows of maximal integral triangulations
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1115
EP - 1128
AB - This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.
LA - eng
KW - curvature flow; Farey sequence; Farey tree; maximal integral triangulation
UR - http://eudml.org/doc/75374
ER -
References
top- [A] M. AIGNER, Combinatorial Theory, Springer, 1979. Zbl0415.05001MR80h:05002
- [C] H.S.M. COXETER, An introduction to geometry, Wiley, 1989.
- [DC] M. DO CARMO, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976. Zbl0326.53001MR52 #15253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.