The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair
Welleda Baldoni; Pierluigi Möseneder Frajria
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 4, page 1179-1214
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaldoni, Welleda, and Frajria, Pierluigi Möseneder. "The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair." Annales de l'institut Fourier 49.4 (1999): 1179-1214. <http://eudml.org/doc/75377>.
@article{Baldoni1999,
abstract = {Let $G/K$ a noncompact symmetric space with Iwasawa decomposition $KAN$. The Harish-Chandra homomorphism is an explicit homomorphism between the algebra of invariant differential operators on $G/K$ and the algebra of polynomials on $A$ that are invariant under the Weyl group action of the pair $(G,A)$. The main result of this paper is a generalization to the quantum setting of the Harish-Chandra homomorphism in the case of $G/K$ being an hermitian (classical) symmetric space},
author = {Baldoni, Welleda, Frajria, Pierluigi Möseneder},
journal = {Annales de l'institut Fourier},
keywords = {hermitian symmetric space; quantum group; Harish-Chandra homomorphism; algebra of differential operators; quantized enveloping algebra},
language = {eng},
number = {4},
pages = {1179-1214},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair},
url = {http://eudml.org/doc/75377},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Baldoni, Welleda
AU - Frajria, Pierluigi Möseneder
TI - The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1179
EP - 1214
AB - Let $G/K$ a noncompact symmetric space with Iwasawa decomposition $KAN$. The Harish-Chandra homomorphism is an explicit homomorphism between the algebra of invariant differential operators on $G/K$ and the algebra of polynomials on $A$ that are invariant under the Weyl group action of the pair $(G,A)$. The main result of this paper is a generalization to the quantum setting of the Harish-Chandra homomorphism in the case of $G/K$ being an hermitian (classical) symmetric space
LA - eng
KW - hermitian symmetric space; quantum group; Harish-Chandra homomorphism; algebra of differential operators; quantized enveloping algebra
UR - http://eudml.org/doc/75377
ER -
References
top- [1] M. BALDONI, D. BARBACH and P. MÖSENEDER FRAJRIA, Parabolic subalgebras of quantized enveloping algebras, Preprint. Zbl0932.17014
- [2] N. BOURBAKI, Groupes et algèbres de Lie, Hermann, Paris, 1968.
- [3] P. MÖSENEDER FRAJRIA, The annihilator of invariant vectors for a quantized parabolic subalgebra, Preprint. Zbl0799.22007
- [4] P. MÖSENEDER FRAJRIA, A guide to L-operators, Rend. Mat., (7) 18 (1998), 65-85. Zbl0914.17007MR2000a:17019
- [5] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978. Zbl0451.53038
- [6] S. HELGASON, Groups and geometric analysis, Academic Press, 1984.
- [7] J. C. JANTZEN, Lectures on quantum groups, Graduate studies in Mathematics, vol. 6, A.M.S., 1995. Zbl0842.17012MR96m:17029
- [8] A. JOSEPH, Quantum groups and their primitive ideals, Springer, Berlin, 1995. Zbl0808.17004MR96d:17015
- [9] A. JOSEPH and G. LETZTER, Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra, 153 (1992), 289-317. Zbl0779.17012MR94b:17023
- [10] B. KOSTANT and S. SAHI, The Capelli identity, tube domains and the generalized Laplace transform, Adv. in Math., 87 (1991), 71-92. Zbl0748.22008MR92h:22033
- [11] G. LUSZTIG, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., 70 (1988), 237-249. Zbl0651.17007MR89k:17029
- [12] G. LUSZTIG, Quantum groups at root of 1, Geom. Dedicata, 35 (1990), 89-114. Zbl0714.17013MR91j:17018
- [13] N. YU. RESHETIKHIN, L.A. TAKHTADZHYAN, and L.D. FADDEEV, Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1 (1990), 193-225. Zbl0715.17015MR90j:17039
- [14] N. R. WALLACH, The analytic continuation of the discrete series II, Trans. Amer. Math. Soc., 251 (1979), 19-37. Zbl0419.22018MR81a:22009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.