Norm estimates for unitarizable highest weight modules

Bernhard Krötz

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 4, page 1241-1264
  • ISSN: 0373-0956

Abstract

top
We consider families of unitarizable highest weight modules ( λ ) λ L on a halfline L . All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain 𝒟 , and the polynomial functions form a dense subset of each module λ , λ L . In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all λ L the module of hyperfunction vectors λ - can be realized as the space of all holomorphic functions on 𝒟 .

How to cite

top

Krötz, Bernhard. "Norm estimates for unitarizable highest weight modules." Annales de l'institut Fourier 49.4 (1999): 1241-1264. <http://eudml.org/doc/75380>.

@article{Krötz1999,
abstract = {We consider families of unitarizable highest weight modules $(\{\cal H\}_\lambda )_\{\lambda \in L\}$ on a halfline $L$. All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain $\{\cal D\}$, and the polynomial functions form a dense subset of each module $\{\cal H\}_\lambda $, $\lambda \in L$. In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all $\lambda \in L$ the module of hyperfunction vectors $\{\cal H\}_\lambda ^\{-\infty \}$ can be realized as the space of all holomorphic functions on $\{\cal D\}$.},
author = {Krötz, Bernhard},
journal = {Annales de l'institut Fourier},
keywords = {highest weight module; unitary representation; semisimple Lie group; semisimple Lie algebra; hermitian Lie algebra; bounded symmetric domain},
language = {eng},
number = {4},
pages = {1241-1264},
publisher = {Association des Annales de l'Institut Fourier},
title = {Norm estimates for unitarizable highest weight modules},
url = {http://eudml.org/doc/75380},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Krötz, Bernhard
TI - Norm estimates for unitarizable highest weight modules
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1241
EP - 1264
AB - We consider families of unitarizable highest weight modules $({\cal H}_\lambda )_{\lambda \in L}$ on a halfline $L$. All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain ${\cal D}$, and the polynomial functions form a dense subset of each module ${\cal H}_\lambda $, $\lambda \in L$. In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all $\lambda \in L$ the module of hyperfunction vectors ${\cal H}_\lambda ^{-\infty }$ can be realized as the space of all holomorphic functions on ${\cal D}$.
LA - eng
KW - highest weight module; unitary representation; semisimple Lie group; semisimple Lie algebra; hermitian Lie algebra; bounded symmetric domain
UR - http://eudml.org/doc/75380
ER -

References

top
  1. [BrDe92] J.-L. BRYLINSKI, and P. DELORME, Vecteurs distributions H-Invariants pur les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein, Invent. Math., 109 (1992), 619-664. Zbl0785.22014MR93m:22016
  2. [ChFa98] H. CHÉBLI, and J. FARAUT, Fonctions holomorphes à croissance modérée et vecteurs distributions, submitted. 
  3. [Cl98] J.-L. CLERC, Distribution vectors for a highest weight representation, submitted. 
  4. [EHW83] T.J. ENRIGHT, R. HOWE, and N. WALLACH, A classification of unitary highest weight modules, Proc. “Representation theory of reductive groups” (Park City, UT, 1982), 97-149 ; Progr. Math., 40 (1983), 97-143. Zbl0535.22012MR86c:22028
  5. [EJ90] T.J. ENRIGHT and A. JOSEPH, An intrinsic classification of unitary highest weight modules, Math. Ann., 288 (1990), 571-594. Zbl0725.17009MR91m:17005
  6. [Fo89] G.B. FOLLAND, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. Zbl0682.43001MR92k:22017
  7. [Hel78] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978. Zbl0451.53038MR80k:53081
  8. [HiÓl96] J. HILGERT and G. ÓLAFSSON, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. Zbl0931.53004
  9. [HoTa92] R. HOWE and E.C. TAN, Non-Abelian Harmonic Analysis, Springer, New York, Berlin, 1992. Zbl0768.43001MR93f:22009
  10. [Jak83] H.P. JAKOBSEN, Hermitean symmetric spaces and their unitary highest weight modules, J. Funct. Anal., 52 (1983), 385-412. Zbl0517.22014MR85a:17004
  11. [Kö69] G. KÖTHE, Topological Vector Spaces I, Grundlehren der Math. Wissenschaften, 159, Springer, Berlin, Heidelberg, New York, 1969. Zbl0179.17001
  12. [KNÓ97] B.K. KRÖTZ, H. NEEB, and G. ÓLAFSSON, Spherical Representations and Mixed Symmetric Spaces, Representation Theory, 1 (1997), 424-461. Zbl0887.22022MR99a:22031
  13. [KNÓ98] B.K. KRÖTZ, H. NEEB, and G. ÓLAFSSON, Spherical Functions on Mixed Symmetric Spaces, submitted. Zbl0989.22017
  14. [Ne94a] K.-H. NEEB, Realization of general unitary highest weight representations, Preprint Nr. 1662, TH Darmstadt, 1994. 
  15. [Ne94b] K.-H. NEEB, Holomorphic representation theory II, Acta Math., 173:1 (1994), 103-133. Zbl0842.22004MR96a:22025
  16. [Ne97] K.-H. NEEB, Smooth vectors for highest weight representations, submitted. Zbl1029.17007
  17. [Ne99] K.-H. NEEB, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, to appear. Zbl0936.22001
  18. [Sa80] I. SATAKE, Algebraic Structures of Symmetric Domains, Publications of the Math. Soc. of Japan, 14, Princeton Univ. Press, 1980. Zbl0483.32017MR82i:32003
  19. [Tr67] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, London, 1967. Zbl0171.10402MR37 #726

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.