Norm estimates for unitarizable highest weight modules
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 4, page 1241-1264
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKrötz, Bernhard. "Norm estimates for unitarizable highest weight modules." Annales de l'institut Fourier 49.4 (1999): 1241-1264. <http://eudml.org/doc/75380>.
@article{Krötz1999,
abstract = {We consider families of unitarizable highest weight modules $(\{\cal H\}_\lambda )_\{\lambda \in L\}$ on a halfline $L$. All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain $\{\cal D\}$, and the polynomial functions form a dense subset of each module $\{\cal H\}_\lambda $, $\lambda \in L$. In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all $\lambda \in L$ the module of hyperfunction vectors $\{\cal H\}_\lambda ^\{-\infty \}$ can be realized as the space of all holomorphic functions on $\{\cal D\}$.},
author = {Krötz, Bernhard},
journal = {Annales de l'institut Fourier},
keywords = {highest weight module; unitary representation; semisimple Lie group; semisimple Lie algebra; hermitian Lie algebra; bounded symmetric domain},
language = {eng},
number = {4},
pages = {1241-1264},
publisher = {Association des Annales de l'Institut Fourier},
title = {Norm estimates for unitarizable highest weight modules},
url = {http://eudml.org/doc/75380},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Krötz, Bernhard
TI - Norm estimates for unitarizable highest weight modules
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1241
EP - 1264
AB - We consider families of unitarizable highest weight modules $({\cal H}_\lambda )_{\lambda \in L}$ on a halfline $L$. All these modules can be realized as vector valued holomorphic functions on a bounded symmetric domain ${\cal D}$, and the polynomial functions form a dense subset of each module ${\cal H}_\lambda $, $\lambda \in L$. In this paper we compare the norm of a fixed polynomial in two Hilbert spaces corresponding to two different parameters. As an application we obtain that for all $\lambda \in L$ the module of hyperfunction vectors ${\cal H}_\lambda ^{-\infty }$ can be realized as the space of all holomorphic functions on ${\cal D}$.
LA - eng
KW - highest weight module; unitary representation; semisimple Lie group; semisimple Lie algebra; hermitian Lie algebra; bounded symmetric domain
UR - http://eudml.org/doc/75380
ER -
References
top- [BrDe92] J.-L. BRYLINSKI, and P. DELORME, Vecteurs distributions H-Invariants pur les séries principales généralisées d'espaces symétriques réductifs et prolongement méromorphe d'intégrales d'Eisenstein, Invent. Math., 109 (1992), 619-664. Zbl0785.22014MR93m:22016
- [ChFa98] H. CHÉBLI, and J. FARAUT, Fonctions holomorphes à croissance modérée et vecteurs distributions, submitted.
- [Cl98] J.-L. CLERC, Distribution vectors for a highest weight representation, submitted.
- [EHW83] T.J. ENRIGHT, R. HOWE, and N. WALLACH, A classification of unitary highest weight modules, Proc. “Representation theory of reductive groups” (Park City, UT, 1982), 97-149 ; Progr. Math., 40 (1983), 97-143. Zbl0535.22012MR86c:22028
- [EJ90] T.J. ENRIGHT and A. JOSEPH, An intrinsic classification of unitary highest weight modules, Math. Ann., 288 (1990), 571-594. Zbl0725.17009MR91m:17005
- [Fo89] G.B. FOLLAND, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. Zbl0682.43001MR92k:22017
- [Hel78] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978. Zbl0451.53038MR80k:53081
- [HiÓl96] J. HILGERT and G. ÓLAFSSON, Causal Symmetric Spaces, Geometry and Harmonic Analysis, Acad. Press, 1996. Zbl0931.53004
- [HoTa92] R. HOWE and E.C. TAN, Non-Abelian Harmonic Analysis, Springer, New York, Berlin, 1992. Zbl0768.43001MR93f:22009
- [Jak83] H.P. JAKOBSEN, Hermitean symmetric spaces and their unitary highest weight modules, J. Funct. Anal., 52 (1983), 385-412. Zbl0517.22014MR85a:17004
- [Kö69] G. KÖTHE, Topological Vector Spaces I, Grundlehren der Math. Wissenschaften, 159, Springer, Berlin, Heidelberg, New York, 1969. Zbl0179.17001
- [KNÓ97] B.K. KRÖTZ, H. NEEB, and G. ÓLAFSSON, Spherical Representations and Mixed Symmetric Spaces, Representation Theory, 1 (1997), 424-461. Zbl0887.22022MR99a:22031
- [KNÓ98] B.K. KRÖTZ, H. NEEB, and G. ÓLAFSSON, Spherical Functions on Mixed Symmetric Spaces, submitted. Zbl0989.22017
- [Ne94a] K.-H. NEEB, Realization of general unitary highest weight representations, Preprint Nr. 1662, TH Darmstadt, 1994.
- [Ne94b] K.-H. NEEB, Holomorphic representation theory II, Acta Math., 173:1 (1994), 103-133. Zbl0842.22004MR96a:22025
- [Ne97] K.-H. NEEB, Smooth vectors for highest weight representations, submitted. Zbl1029.17007
- [Ne99] K.-H. NEEB, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics, de Gruyter, to appear. Zbl0936.22001
- [Sa80] I. SATAKE, Algebraic Structures of Symmetric Domains, Publications of the Math. Soc. of Japan, 14, Princeton Univ. Press, 1980. Zbl0483.32017MR82i:32003
- [Tr67] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, London, 1967. Zbl0171.10402MR37 #726
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.