Range of the horocyclic Radon transform on trees
Enrico Casadio Tarabusi; Joel M. Cohen; Flavia Colonna
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 1, page 211-234
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTarabusi, Enrico Casadio, Cohen, Joel M., and Colonna, Flavia. "Range of the horocyclic Radon transform on trees." Annales de l'institut Fourier 50.1 (2000): 211-234. <http://eudml.org/doc/75414>.
@article{Tarabusi2000,
abstract = {In this paper we study the Radon transform $R$ on the set $\{\cal H\}$ of horocycles of a homogeneous tree $T$, and describe its image on various function spaces. We show that the functions of compact support on $\{\cal H\}$ that satisfy two explicit Radon conditions constitute the image under $R$ of functions of finite support on $T$. We extend these results to spaces of functions with suitable decay on $T$, whose image under $R$ satisfies corresponding decay conditions and contains distributions on $\{\cal H\}$ that are not defined pointwise. We also show that $R$ is one-to-one on these spaces. Formulas are expressed in an invariant fashion in terms of a measure on $\{\cal H\}$ preserved by the full automorphism group of $T$.},
author = {Tarabusi, Enrico Casadio, Cohen, Joel M., Colonna, Flavia},
journal = {Annales de l'institut Fourier},
keywords = {Radon transform; homogeneous trees; horocycles; range characterization; distributions},
language = {eng},
number = {1},
pages = {211-234},
publisher = {Association des Annales de l'Institut Fourier},
title = {Range of the horocyclic Radon transform on trees},
url = {http://eudml.org/doc/75414},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Tarabusi, Enrico Casadio
AU - Cohen, Joel M.
AU - Colonna, Flavia
TI - Range of the horocyclic Radon transform on trees
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 211
EP - 234
AB - In this paper we study the Radon transform $R$ on the set ${\cal H}$ of horocycles of a homogeneous tree $T$, and describe its image on various function spaces. We show that the functions of compact support on ${\cal H}$ that satisfy two explicit Radon conditions constitute the image under $R$ of functions of finite support on $T$. We extend these results to spaces of functions with suitable decay on $T$, whose image under $R$ satisfies corresponding decay conditions and contains distributions on ${\cal H}$ that are not defined pointwise. We also show that $R$ is one-to-one on these spaces. Formulas are expressed in an invariant fashion in terms of a measure on ${\cal H}$ preserved by the full automorphism group of $T$.
LA - eng
KW - Radon transform; homogeneous trees; horocycles; range characterization; distributions
UR - http://eudml.org/doc/75414
ER -
References
top- [A] G. AHUMADA BUSTAMANTE, Analyse harmonique sur l'espace des chemins d'un arbre, Thèse de Doctorat d'État, Université de Paris-Sud (Orsay), 1988.
- [BC] C.A. BERENSTEIN, E. CASADIO TARABUSI, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM. J. Appl. Math., 56 (1996), 755-764. Zbl0854.35124MR97d:53073
- [BCCP] C.A. BERENSTEIN, E. CASADIO TARABUSI, J.M. COHEN, M.A. PICARDELLO, Integral geometry on trees, Amer. J. Math., 113 (1991), 441-470. Zbl0729.44002MR92g:05066
- [BFPp] W. BETORI, J. FARAUT, M. PAGLIACCI, The horicycles of a tree and the Radon transform, preliminary version of [BFP].
- [BFP] W. BETORI, J. FARAUT, M. PAGLIACCI, An inversion formula for the Radon transform on trees, Math. Z., 201 (1989), 327-337. Zbl0651.43003MR90k:22004
- [BP] W. BETORI, M. PAGLIACCI, The Radon transform on trees, Boll. Un. Mat. Ital. B (6), 5 (1986), 267-277. Zbl0605.43006MR87h:05073
- [CCC] E. CASADIO TARABUSI, J.M. COHEN, F. COLONNA, Characterization of the range of the Radon transform on homogeneous trees, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 11-17. Zbl0916.46030MR2000h:44001
- [CCP1] E. CASADIO TARABUSI, J.M. COHEN, A.M. PICARDELLO, The horocyclic Radon transform on non-homogeneous trees, Israel J. Math., 78 (1992), 363-380. Zbl0772.05031
- [CCP2] E. CASADIO TARABUSI, J.M. COHEN, A.M. PICARDELLO, Range of the X-ray transform on trees, Adv. Math., 109 (1999), 153-167. Zbl0916.46030MR96a:05043a
- [CC] J.M. COHEN, F. COLONNA, The functional analysis of the X-ray transform on trees, Adv. in Appl. Math., 14 (1993), 123-138. Zbl0782.46025MR94a:05048
- [CD] J.M. COHEN, L. DE MICHELE, The radial Fourier-Stieltjes algebra of free groups, Contemp. Math., 10 (1982), 33-40. Zbl0488.43007MR84j:22006
- [CMS] M.G. COWLING, S. MEDA, A.G. SETTI, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math., 16 (1998), 385-423. Zbl0915.43007MR2000i:43005
- [CS] M.G. COWLING, A.G. SETTI, The range of the Helgason-Fourier transformation on homogeneous trees, Bull. Austral. Math. Soc., 59 (1999), 237-246. Zbl0929.43004MR2000b:43006
- [H] S. HELGASON, The Radon transform, Progr. Math., 5, Birkhäuser, Boston, 1980. Zbl0453.43011MR83f:43012
- [R] J. RADON, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl, 69 (1917), 262-277, reprinted in [H, pp. 177-192]. Zbl46.0436.02JFM46.0436.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.