Range of the horocyclic Radon transform on trees
Enrico Casadio Tarabusi; Joel M. Cohen; Flavia Colonna
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 1, page 211-234
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] G. AHUMADA BUSTAMANTE, Analyse harmonique sur l'espace des chemins d'un arbre, Thèse de Doctorat d'État, Université de Paris-Sud (Orsay), 1988.
- [BC] C.A. BERENSTEIN, E. CASADIO TARABUSI, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM. J. Appl. Math., 56 (1996), 755-764. Zbl0854.35124MR97d:53073
- [BCCP] C.A. BERENSTEIN, E. CASADIO TARABUSI, J.M. COHEN, M.A. PICARDELLO, Integral geometry on trees, Amer. J. Math., 113 (1991), 441-470. Zbl0729.44002MR92g:05066
- [BFPp] W. BETORI, J. FARAUT, M. PAGLIACCI, The horicycles of a tree and the Radon transform, preliminary version of [BFP].
- [BFP] W. BETORI, J. FARAUT, M. PAGLIACCI, An inversion formula for the Radon transform on trees, Math. Z., 201 (1989), 327-337. Zbl0651.43003MR90k:22004
- [BP] W. BETORI, M. PAGLIACCI, The Radon transform on trees, Boll. Un. Mat. Ital. B (6), 5 (1986), 267-277. Zbl0605.43006MR87h:05073
- [CCC] E. CASADIO TARABUSI, J.M. COHEN, F. COLONNA, Characterization of the range of the Radon transform on homogeneous trees, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 11-17. Zbl0916.46030MR2000h:44001
- [CCP1] E. CASADIO TARABUSI, J.M. COHEN, A.M. PICARDELLO, The horocyclic Radon transform on non-homogeneous trees, Israel J. Math., 78 (1992), 363-380. Zbl0772.05031
- [CCP2] E. CASADIO TARABUSI, J.M. COHEN, A.M. PICARDELLO, Range of the X-ray transform on trees, Adv. Math., 109 (1999), 153-167. Zbl0916.46030MR96a:05043a
- [CC] J.M. COHEN, F. COLONNA, The functional analysis of the X-ray transform on trees, Adv. in Appl. Math., 14 (1993), 123-138. Zbl0782.46025MR94a:05048
- [CD] J.M. COHEN, L. DE MICHELE, The radial Fourier-Stieltjes algebra of free groups, Contemp. Math., 10 (1982), 33-40. Zbl0488.43007MR84j:22006
- [CMS] M.G. COWLING, S. MEDA, A.G. SETTI, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math., 16 (1998), 385-423. Zbl0915.43007MR2000i:43005
- [CS] M.G. COWLING, A.G. SETTI, The range of the Helgason-Fourier transformation on homogeneous trees, Bull. Austral. Math. Soc., 59 (1999), 237-246. Zbl0929.43004MR2000b:43006
- [H] S. HELGASON, The Radon transform, Progr. Math., 5, Birkhäuser, Boston, 1980. Zbl0453.43011MR83f:43012
- [R] J. RADON, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl, 69 (1917), 262-277, reprinted in [H, pp. 177-192]. Zbl46.0436.02JFM46.0436.02