Le traitement du signal et l'analyse mathématique

Yves Meyer

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 593-632
  • ISSN: 0373-0956

Abstract

top
The interaction between signal processing and functional analysis is discussed on some relevant examples.

How to cite

top

Meyer, Yves. "Le traitement du signal et l'analyse mathématique." Annales de l'institut Fourier 50.2 (2000): 593-632. <http://eudml.org/doc/75430>.

@article{Meyer2000,
abstract = {Nous étudons sur des exemples significatifs l’intersection entre le traitement du signal et l’analyse fonctionnelle.},
author = {Meyer, Yves},
journal = {Annales de l'institut Fourier},
keywords = {wavelet; time-frequency atom; Fourier analysis; chirp; Riesz basis},
language = {fre},
number = {2},
pages = {593-632},
publisher = {Association des Annales de l'Institut Fourier},
title = {Le traitement du signal et l'analyse mathématique},
url = {http://eudml.org/doc/75430},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Meyer, Yves
TI - Le traitement du signal et l'analyse mathématique
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 593
EP - 632
AB - Nous étudons sur des exemples significatifs l’intersection entre le traitement du signal et l’analyse fonctionnelle.
LA - fre
KW - wavelet; time-frequency atom; Fourier analysis; chirp; Riesz basis
UR - http://eudml.org/doc/75430
ER -

References

top
  1. [1] A. COHEN, R. RYAN, Wavelets and multiscale signal processing., Appl. Math & Math. Comp., Chapman & Hall ed., 11 (1995). Zbl0848.42021MR97k:42048
  2. [2] I. DAUBECHIES, Ten lectures on wavelets, SIAM, Philadelphia, 1992. Zbl0776.42018MR93e:42045
  3. [3] S. MALLAT, A wavelet tour of signal processing, Academic Press, 1988. Zbl0998.94510
  4. [4] M. VETTERLI, J. KOVACEVIC, Wavelets and subband coding, Prentice Hall PTR, Englewood Cliffs, NJ 07632, 1995. Zbl0885.94002
  5. [5] Y. MEYER, Wavelets and operators, Vol. 1,2 and 3, Cambridge University Press, 1992. Zbl0776.42019
  6. [6] H.J. LANDAU, Sampling, data transmission and the Nyquist rate, Proceedings of the IEEE, vol. 55, 10 (1967). 
  7. [7] J. GERVER, The differentiability of the Riemann's function at certain rational multiples of π, Amer. J. Math., 92 (1970), 33-35 et 93 (1971), 33-41. Zbl0203.05904MR42 #434
  8. [8] M. HOLSCHNEIDER, Ph. TCHAMITCHIAN, Pointwise analysis of Riemann's ‘non differentiable’ function, Inventiones Mathematicae, 105 (1991), 157-176. Zbl0741.26004
  9. [9] S. ITATSU, Differentiability of Riemann's function, Proc. Japan Acad., Ser. A. Math. Sci, 57, vol. 10 (1981), 492-495. Zbl0501.26004MR83e:42006
  10. [10] S. JAFFARD, The spectrum of singularities of the Riemann's function, Rev. Math. Iberoamericana, 12 (1996), 441-490. Zbl0889.26005MR97g:26006
  11. [11] S. JAFFARD, Y. MEYER, Wavelets methods for pointwise regularity and local oscillations of functions, Memoirs of the AMS, 123 (1996). Zbl0873.42019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.