Zeros of Fekete polynomials

Brian Conrey; Andrew Granville; Bjorn Poonen; K. Soundararajan

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 865-889
  • ISSN: 0373-0956

Abstract

top
For p an odd prime, we show that the Fekete polynomial f p ( t ) = a = 0 p - 1 a p t a has κ 0 p zeros on the unit circle, where 0 . 500813 > κ 0 > 0 . 500668 . Here κ 0 - 1 / 2 is the probability that the function 1 / x + 1 / ( 1 - x ) + n : n 0 , 1 δ n / ( x - n ) has a zero in ] 0 , 1 [ , where each δ n is ± 1 with y 1 / 2 . In fact f p ( t ) has absolute value p at each primitive p th root of unity, and we show that if | f p ( e ( 2 i π ( K + τ ) / p ) ) | < ϵ p for some τ ] 0 , 1 [ then there is a zero of f close to this arc.

How to cite

top

Conrey, Brian, et al. "Zeros of Fekete polynomials." Annales de l'institut Fourier 50.3 (2000): 865-889. <http://eudml.org/doc/75441>.

@article{Conrey2000,
abstract = {For $p$ an odd prime, we show that the Fekete polynomial $f_p(t)=\sum ^\{p-1\}_\{a=0\} \big (\{a\over p\}\big ) t^a$ has $\sim \kappa _0 p$ zeros on the unit circle, where $0.500813&gt;\kappa _0&gt;0.500668$. Here $\kappa _0-1/2$ is the probability that the function $1/x+1/(1-x) + \sum _\{n\in \{\Bbb Z\}:\ n\ne 0,1\} \delta _n/(x-n)$ has a zero in $]0,1[$, where each $\delta _n$ is $\pm 1$ with y $1/2$. In fact $f_p(t)$ has absolute value $\sqrt\{p\}$ at each primitive $p$th root of unity, and we show that if $\vert f_p( e(2i\pi (K+\tau )/p))\vert &lt; \epsilon \sqrt\{p\}$ for some $\tau \in ]0,1[$ then there is a zero of $f$ close to this arc.},
author = {Conrey, Brian, Granville, Andrew, Poonen, Bjorn, Soundararajan, K.},
journal = {Annales de l'institut Fourier},
keywords = {Fekete polynomials; zeros of polynomials},
language = {eng},
number = {3},
pages = {865-889},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zeros of Fekete polynomials},
url = {http://eudml.org/doc/75441},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Conrey, Brian
AU - Granville, Andrew
AU - Poonen, Bjorn
AU - Soundararajan, K.
TI - Zeros of Fekete polynomials
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 865
EP - 889
AB - For $p$ an odd prime, we show that the Fekete polynomial $f_p(t)=\sum ^{p-1}_{a=0} \big ({a\over p}\big ) t^a$ has $\sim \kappa _0 p$ zeros on the unit circle, where $0.500813&gt;\kappa _0&gt;0.500668$. Here $\kappa _0-1/2$ is the probability that the function $1/x+1/(1-x) + \sum _{n\in {\Bbb Z}:\ n\ne 0,1} \delta _n/(x-n)$ has a zero in $]0,1[$, where each $\delta _n$ is $\pm 1$ with y $1/2$. In fact $f_p(t)$ has absolute value $\sqrt{p}$ at each primitive $p$th root of unity, and we show that if $\vert f_p( e(2i\pi (K+\tau )/p))\vert &lt; \epsilon \sqrt{p}$ for some $\tau \in ]0,1[$ then there is a zero of $f$ close to this arc.
LA - eng
KW - Fekete polynomials; zeros of polynomials
UR - http://eudml.org/doc/75441
ER -

References

top
  1. [1] R.C. BAKER and H.L. MONTGOMERY, Oscillations of Quadratic L-functions, Analytic Number Theory (ed. B.C. Berndt et. al.), Birkhäuser, Boston (1990), 23-40. Zbl0718.11039MR91k:11071
  2. [2] H. DAVENPORT, Multiplicative Number Theory (2nd ed.), Springer-Verlag, New York, 1980. Zbl0453.10002MR82m:10001
  3. [3] P. ERDÖS and P. TURÁN, On the distribution of roots of polynomials, Ann. of Math., 51 (1950), 105-119. Zbl0036.01501MR11,431b
  4. [4] M. FEKETE and G. PÓLYA, Über ein Problem von Laguerre, Rend. Circ. Mat. Palermo, 34 (1912), 89-120. JFM43.0145.02
  5. [5] H.L. MONTGOMERY, An exponential polynomial formed with the Legendre symbol, Acta Arithmetica, 37 (1980), 375-380. Zbl0369.10024MR82a:10041
  6. [6] G. PÓLYA, Verschiedene Bemerkung zur Zahlentheorie, Jber. deutsch Math. Verein, 28 (1919), 31-40. JFM47.0882.06
  7. [7] M. SAMBANDHAM and V. THANGARAJ, On the average number of real zeros of a random trigonometric polynomial, J. Indian Math. Soc., 47 (1983), 139-150. Zbl0605.60063MR87m:42001
  8. [8] A. WEIL, Sur les fonctions algébriques à corps de constantes fini, C. R. Acad. Sci., Paris, 210 (1940), 592-594. Zbl0023.29401MR2,123dJFM66.0135.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.