Diamagnetic behavior of sums Dirichlet eigenvalues

László Erdös; Michael Loss; Vitali Vougalter

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 891-907
  • ISSN: 0373-0956

Abstract

top
The Li-Yau semiclassical lower bound for the sum of the first N eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.

How to cite

top

Erdös, László, Loss, Michael, and Vougalter, Vitali. "Diamagnetic behavior of sums Dirichlet eigenvalues." Annales de l'institut Fourier 50.3 (2000): 891-907. <http://eudml.org/doc/75442>.

@article{Erdös2000,
abstract = {The Li-Yau semiclassical lower bound for the sum of the first $N$ eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.},
author = {Erdös, László, Loss, Michael, Vougalter, Vitali},
journal = {Annales de l'institut Fourier},
keywords = {magnetic laplacian; diamagnetic inequality; semiclassical bound},
language = {eng},
number = {3},
pages = {891-907},
publisher = {Association des Annales de l'Institut Fourier},
title = {Diamagnetic behavior of sums Dirichlet eigenvalues},
url = {http://eudml.org/doc/75442},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Erdös, László
AU - Loss, Michael
AU - Vougalter, Vitali
TI - Diamagnetic behavior of sums Dirichlet eigenvalues
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 891
EP - 907
AB - The Li-Yau semiclassical lower bound for the sum of the first $N$ eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.
LA - eng
KW - magnetic laplacian; diamagnetic inequality; semiclassical bound
UR - http://eudml.org/doc/75442
ER -

References

top
  1. [AHS78] J.E. AVRON, I. HERBST and B. SIMON, Schrödinger operators with magnetic fields, I. General interactions, Duke Math. J., 45 (1978), 847-883. Zbl0399.35029MR80k:35054
  2. [B72] F.A. BEREZIN, Convex operator functions, Math. USSR. Sb., 17 (1972), 269-277. Zbl0279.47006
  3. [CFKS87] H.L. CYCON, R.G. FROESE, W. KIRSCH and B. SIMON, Schrödinger operators (with application to Quantum Mechanics and Global Geometry), Springer 1987. Zbl0619.47005
  4. [HSU77] H. HESS, R. SCHRADER and D.A. UHLENBROCK, Domination of semigroups and generalizations of Kato's inequality, Duke Math. J., 44 (1977), 893-904. Zbl0379.47028MR56 #16446
  5. [Iv98] V. IVRII, Microlocal Analysis and Precise Spectral Asymptotics, Springer, 1998. Zbl0906.35003MR99e:58193
  6. [K72] T. KATO, Schrödinger operators with singular potentials, Isr. J. Math., 13 (1972), 135-148. Zbl0246.35025MR48 #12155
  7. [L80] E.H. LIEB, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math., 36 (1980), 241-252. Zbl0445.58029MR82i:35134
  8. [LL97] E.H. LIEB, M. LOSS, Analysis, Graduate Studies in Mathematics, Volume 14, American Mathematical Society (1997). Zbl0873.26002MR98b:00004
  9. [LT75] E.H. LIEB, W. THIRRING, Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., 35 (1975), 687. 
  10. [LT76] E.H. LIEB, W. THIRRING, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Math. Phys., Essays in Honor of Valentine Bargmann., Princeton (1976). Zbl0342.35044
  11. [LW99] A. LAPTEV, T. WEIDL, Sharp Lieb-Thirring inequalities in high dimensions, to appear in Acta Math. Zbl1142.35531
  12. [LY83] P. LI, S.-T. YAU, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. Zbl0554.35029MR84k:58225
  13. [RS79] M. REED, B. SIMON, Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, 1979. Zbl0405.47007MR80m:81085
  14. [S79] B. SIMON, Functional integration and Quantum Physics, Academic Press, 1979. Zbl0434.28013MR84m:81066
  15. [S77, 79] B. SIMON, An abstract Kato inequality for generators of positivity preserving semigroups, Ind. Math. J., 26 (1977), 1067-1073. Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97-101. Zbl0389.47021MR57 #1194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.