C*-algèbre de relations de commutation
Annales de l'I.H.P. Physique théorique (1968)
- Volume: 8, Issue: 2, page 139-161
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] D. Kastler, The C*-algebras of a free boson field. I. Discussion of Basic Facts. Commun. Math. Phys., 1, 1965, 14-18. Zbl0137.45601MR193983
- [2] J. Manuceau, Étude de quelques automorphismes de la C*-algèbre du champ de bosons libres. Ann. Inst. Henri Poincaré, 8, 1968, 117-138. Zbl0173.29901MR225544
- [3] J. Dixmier, Les C*-algèbres et leurs représentations. Gauthier-Villars, 1964, Paris. Zbl0152.32902MR171173
- [4] H. Araki, Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory. J. Math. Phys., 1, 1960, 492. Zbl0099.22906MR127821
- [5] Z. Takeda, Inductive limit and infinite direct product of operator algebras. Tôhoku Math. J., 7, 1955, 67-86. Zbl0065.34903MR74800
- [6] M.A. Naimark, Normed Rings. Noordhoff-Groningen, 1959, The Netherlands. Zbl0089.10102MR355601
- [7] J. Dieudonné, Fondements de l'analyse moderne. Gauthier-Villars, 1963, Paris. Zbl0114.26602MR161945
- [8] M.H. Stone, On one-parameter unitary groups in Hilbert space. Annals of Mathematics (2), 33, 1932, 643-648. Zbl0005.16403MR1503079
- [9] G.F. Dell'Antonio, S. Doplicher and D. Ruelle, A theorem on canonical commutation and anticommutation relations. Commun. Math. Phys., 2, 1966, 223-230. Zbl0178.58001MR204063
- [10] D. Kastler, Introduction à l'électrodynamique quantique. Dunod, 1961, Paris. Zbl0098.20004MR144659
- [11] J. Von Neumann, Die Eindentigkeit der Schrödingerschen Operators. Math. Ann., 104, 1931, 570. Zbl0001.24703JFM57.1446.01