Collective motions of the relativistic gravitational gas

Ph. Droz-Vincent; Rémi Hakim

Annales de l'I.H.P. Physique théorique (1968)

  • Volume: 9, Issue: 1, page 17-33
  • ISSN: 0246-0211

How to cite

top

Droz-Vincent, Ph., and Hakim, Rémi. "Collective motions of the relativistic gravitational gas." Annales de l'I.H.P. Physique théorique 9.1 (1968): 17-33. <http://eudml.org/doc/75598>.

@article{Droz1968,
author = {Droz-Vincent, Ph., Hakim, Rémi},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {17-33},
publisher = {Gauthier-Villars},
title = {Collective motions of the relativistic gravitational gas},
url = {http://eudml.org/doc/75598},
volume = {9},
year = {1968},
}

TY - JOUR
AU - Droz-Vincent, Ph.
AU - Hakim, Rémi
TI - Collective motions of the relativistic gravitational gas
JO - Annales de l'I.H.P. Physique théorique
PY - 1968
PB - Gauthier-Villars
VL - 9
IS - 1
SP - 17
EP - 33
LA - eng
UR - http://eudml.org/doc/75598
ER -

References

top
  1. [1] R. Hakim, Einstein's Random Equations, to be published. 
  2. [2] E.G. Tauber and J.W. Weinberg, Phys. Rev., t. 122, 1961, p. 1342. Zbl0103.22706MR122525
  3. N.A. Chernikov, Soviet Phys. Dokl., t. 1, 1956, p. 103; t. 2, 1957, p. 248; t. 5, 1960, p. 764; t. 5, 1960, p. 786; t. 7, 1962, p. 397; t. 7, 1962, p. 428 ; Phys. Letters, t. 5, 1963, p. 115; Acta Phys. Polonica, t. 23, 1963, p. 629; t. 26, 1964, p. 1069; t. 27, 1964, p. 465. 
  4. R.W. Lindquist, Ann. Phys., t. 37, 1966, p. 487. Zbl0142.23902
  5. [3] R. Hakim, J. Math. Phys., t. 8, 1967, p. 1153 ; Ibid. , t. 8, 1967, p. 1379. 
  6. See also, Ann. Inst. H. Poincaré, t. 6, 1967, p. 225. Zbl0155.32601
  7. [4] Phase space is always the tangent fibre bundle of the manifold configuration space. 
  8. [5] Actually E is 6-dimensional if we bear in mind the constraint (2). 
  9. [6] Since μ is the tangent bundle of a metric manifold (i. e. U4), then on this space one can construct a canonical metric tensor GAB. See the article by Lindquist (Ref. [2]) and references quoted therein. 
  10. [7] By « effective volume » we mean a 6-dimensional volume. This conservation law, i. e. the Liouville theorem, means that if Δ1 ⊂ Σ1 is such a 6-dimensional volume, then mes (Δ1) = mes (Δ2) where Δ2 is the « volume » in Σ2 obtained from the transformation of Δ1 under the group motion (i. e. Eq. (3)). 
  11. [8] Such as those given by P. Havas and J.N. Goldberg, Phys. Rev., t. 128, 1962, p. 398. Zbl0111.42104
  12. [9] This would be only a simple generalization of previous results where the electromagnetic radiation was dealt with (See Ref. [3] and also R. Hakim and A. Mangeney, Relativistic kinetic equations including radiation effects I. Vlasov approximation (to appear in J. Math. Phys., 9, 116 (1968)). Zbl0173.30402
  13. [10] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale (Publications. Mathématiques n° 10 de l'I. H. E. S.), p. 40. Zbl0098.42607
  14. [11] We mainsly use the notations of Ref [10]. 
  15. [12] Ref. [10], p. 43. 
  16. [13] Ref. [10], p. 27. 
  17. [14] Ref. [10], p. 39. 
  18. [15] In the same way as neglecting correlations of electromagnetic field or of particles amounts to dealing with a kinetic equation valid at order ∼ e2, neglecting correlations of the gravitational field is expected to provide a kinetic equation valid at order χ. We verify this statement on the resulting equation. 
  19. [16] Ref. [10], p. 33. 
  20. [17] B. De Witt, Ann. Phys., t. 9, 1960, p. 220. Zbl0092.45003
  21. [18] Ref. [10], p. 30. 
  22. [19] Ref. [10], p. 35. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.