Reduction of the most degenerate unitary irreductible representations of when restricted to a non-compact rotation subgroup
Annales de l'I.H.P. Physique théorique (1968)
- Volume: 9, Issue: 4, page 327-355
- ISSN: 0246-0211
Access Full Article
topHow to cite
topLimić, N., and Niederle, J.. "Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup." Annales de l'I.H.P. Physique théorique 9.4 (1968): 327-355. <http://eudml.org/doc/75612>.
@article{Limić1968,
author = {Limić, N., Niederle, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetries in microphysics},
language = {eng},
number = {4},
pages = {327-355},
publisher = {Gauthier-Villars},
title = {Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup},
url = {http://eudml.org/doc/75612},
volume = {9},
year = {1968},
}
TY - JOUR
AU - Limić, N.
AU - Niederle, J.
TI - Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup
JO - Annales de l'I.H.P. Physique théorique
PY - 1968
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 327
EP - 355
LA - eng
KW - symmetries in microphysics
UR - http://eudml.org/doc/75612
ER -
References
top- [1] See for example
- K. Bardacki, J.M. Cornwall, P.G.O. Freund and B.W. Lee, Phys. Rev. Letters, t. 13, 1964, p. 698; t. 14, 1965, p. 48. Zbl0126.24701
- A.O. Barut, Phys. Rev., t. 135, 1964, B 839. MR175551
- P. Budini, C. Fronsdal, Phys. Rev. Letters, t. 14, 1965, p. 968. Zbl0135.44802MR180210
- T. Cook, C.J. Goebel and B. Sakita, Phys. Rev. Letters, t. 15, 1965, p. 35. Zbl0127.20803MR195481
- Y. Dothan, M. Gell-Mann and Y. Neeman, Phys. Letters, t. 17, 1965, p. 148. MR183410
- M. Flato, D. Sternheimer, J. Math. Phys., t. 7, 1936, p. 1932; Phys. Rev. Letters, t. 15, 1965, p. 939. Zbl0168.23701
- C. Fronsdal, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966.
- N. Mukunda, R. O'Raifeartaigh and E.C.G. Sudarshan, Phys. Rev. Letters, t. 15, 1965, p. 1041. MR191448
- Y. Nambu, Relativistic Wave Equations for Particles with Internal Structure and Mass Spectrum, University of Chicago, preprint 1966. Zbl0161.23203
- Proceedings of the Milwaukee Conference of Non-compact groups in Particle Physics, Y. Chow (editor), W. A. Benjamin and Co., New York, 1966. Zbl0148.00205
- E.H. Roffmann, Phys. Rev. Letters, t. 16, 1966, p. 210. MR195489
- G. Rueg, W. Rühl and T.S. Santhanam, The SU(6) Model and its Relativistic Generalizations, CERN report 66/1106-5-Th 709, 1966.
- A. Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc. (London), t. 284 A, 1965, p. 146. MR172636
- E.C. Sudarshan, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966.
- [2] H. Joos, Fortschr. d. Phys., t. 10, 1962, p. 65 and Lectures in Theoretical Physics, vol. VII A, p. 132, Boulder, University of Colorado, edited by W. E. Brittin and A. O. Barut, 1965. MR195408
- L. Sertorio and M. Toller, Nuovo Cimento, t. 33, 1964, p. 413. MR187682
- M. Toller, Nuovo Cimento, t. 37, 1965, p. 631. MR194073
- F.T. Hadjioiannou, Nuovo Cimento, t. 44, 1966, p. 185.
- J.F. Boyce, J. Math. Phys., t. 8, 1967, p. 675.
- [3] M.L. Whippman, J. Math. Phys., t. 6, 1965, p. 1534. Zbl0134.03401MR182376
- A. Navon and J. Patera, J. Math. Phys., t. 8, 1967, p. 489. Zbl0158.03102MR213478
- O. Nachtman, Unitary representation of SO(p, q), SU(p, q) groups. University of Vienna prepreint, 1965.
- [4] J. Niederle, J. Math. Phys., t. 8, 1968, p. 1921. Zbl0173.30103
- [5] N.Z. Evans, J. Math. Phys., t. 8, 1967, p. 170. Zbl0149.21703
- A. Sciarrino and M. Toller, On the decomposition of the unitary representations of the group SL(2, c) restricted to the subgroup SU(1, 1). Internal report No. 108, Istituto di Fisica « G. Marconi »;, Roma, 1966. Zbl0163.22905
- N. Mukunda, Unitary representations of the group SO(2, 1) in an SO(1, 1) basis. Syracuse University preprint 1206-SU-103, Syracuse, 1967. MR223489
- N. Mukunda, Unitary Representations of the Homogeneous Lorentz Group in an SO(2, 1) basis. Syracuse University preprint 1206-SU-106, Syracuse, 1967.
- N. Mukunda, Zero mass representations of the Poincaré group in an SO(3, 1) basis. Syracuse University preprint 1206-SU-107, Syracuse, 1967.
- N. Mukunda, Unitary Representations of the Lorentz group: Reduction of the Supplementary Series under a Non-compact Subgroup. Syracuse University preprint 1206-SU-112, Syracuse, 1967. MR227317
- C. Fronsdal, On the Supplementary Series of Representations of Semi-simple Non-compact Groups. ICTP Internal Report 15/1967, Trieste, 1967.
- L. Castell, The Physical Aspects of the Conformal Group SO0(4, 2). ICTP preprint IC/67/66, Trieste, 1967.
- [6] R. Raczka, N. Limić, J. Niederle, J. Math. Phys., t. 7, 1966, p. 1861. Zbl0163.22802MR206146
- [7] N. Limić, J. Niederle, R. Raczka, J. Math. Phys., t. 7, 1966, p. 2026. Zbl0158.45805MR206147
- [8] N. Limić, J. Niederle and R. Raczka, J. Math. Phys., t. 8, 1967, p. 1091. MR218487
- [9] The group G is unimodular if | det AdG(g) | = 1 for all g ∈ G, where AdG(g) is the automorphism of the Lie algebra g of the group G defined by AdG(g): g ∋ X → AdG(g)X = dI(g)eX and I(g) is the inner isomorphism of G onto itself. The group SO0(r, s) is a semi-simple (in fact simple) Lie group, hence unimodular. For the group G = Tm+n-2 s SO0(m - 1, n - 1) we also have | det AdG(g) | = 1, as follows from the following argument. G is a connected group and therefore every neighbourhood U(e) of the identity element e ∈ G generates the whole group G. As G ∋ g → Ad(g) ∈ GL(g) is the homomorphism, it suffices to prove that | det Ad(g) | = 1 for a g ∈ U(e). We choose such U(e) for which a neighbourhood V(o) ∈ g exists such that V(0) ∋ X → exp X ∈ U(e) is the diffeomorphism. Then for every g = exp X ∈ U(e) we have | det Ad (exp X) | = exp { TradX }. In the basis of the Lie algebra of the considered group G, which is the union of the basis of Lie algebras of the groups Tm+n-2 and SO0(m - 1, n — 1), one easily calculates that Tr adX = 0.
- [10] A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann, Paris, 1940. See also S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962. Zbl0063.08195JFM66.1205.02
- [11] The Hilbert space h(M) is a Hilbert space vector of which the equivalence classes of complex valued measurable functions f(p) on M such that and the scalar product is defined by Addition of vectors and multiplication of vectors by complex numbers is defined as the corresponding operations with the complex valued functions.
- [12] The invariant C2 is a Casimir operator gμνXμXν where gμν is the Cartan metric tensor of the Lie algebra s0(m, n) in a basis X1, X2, ..., X[m+n 2].
- [13] Here and elsewhere we use brackets for indices defined as follows:
- [14] For instance all UI representations of the group SO0(m, n) m ≥ n ≥ 2 related with three homogeneous spaces M which are classified by the same real number λ ∈ (0, ∞) and the same eigenvalue of the operator P are equivalent.
- [15] E.C. Titchmarsh, Eigenfunction expansions, Part I, Clarendon Press, Oxford, 1962. Zbl0099.05201MR176151
- [16] N.J. Vilenkin, Special functions and theory of group representation, NA UKA, Moscow, 1965 (In Russian). Zbl0144.38003MR209523
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.