Reduction of the most degenerate unitary irreductible representations of S O 0 ( m , n ) when restricted to a non-compact rotation subgroup

N. Limić; J. Niederle

Annales de l'I.H.P. Physique théorique (1968)

  • Volume: 9, Issue: 4, page 327-355
  • ISSN: 0246-0211

How to cite

top

Limić, N., and Niederle, J.. "Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup." Annales de l'I.H.P. Physique théorique 9.4 (1968): 327-355. <http://eudml.org/doc/75612>.

@article{Limić1968,
author = {Limić, N., Niederle, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetries in microphysics},
language = {eng},
number = {4},
pages = {327-355},
publisher = {Gauthier-Villars},
title = {Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup},
url = {http://eudml.org/doc/75612},
volume = {9},
year = {1968},
}

TY - JOUR
AU - Limić, N.
AU - Niederle, J.
TI - Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup
JO - Annales de l'I.H.P. Physique théorique
PY - 1968
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 327
EP - 355
LA - eng
KW - symmetries in microphysics
UR - http://eudml.org/doc/75612
ER -

References

top
  1. [1] See for example 
  2. K. Bardacki, J.M. Cornwall, P.G.O. Freund and B.W. Lee, Phys. Rev. Letters, t. 13, 1964, p. 698; t. 14, 1965, p. 48. Zbl0126.24701
  3. A.O. Barut, Phys. Rev., t. 135, 1964, B 839. MR175551
  4. P. Budini, C. Fronsdal, Phys. Rev. Letters, t. 14, 1965, p. 968. Zbl0135.44802MR180210
  5. T. Cook, C.J. Goebel and B. Sakita, Phys. Rev. Letters, t. 15, 1965, p. 35. Zbl0127.20803MR195481
  6. Y. Dothan, M. Gell-Mann and Y. Neeman, Phys. Letters, t. 17, 1965, p. 148. MR183410
  7. M. Flato, D. Sternheimer, J. Math. Phys., t. 7, 1936, p. 1932; Phys. Rev. Letters, t. 15, 1965, p. 939. Zbl0168.23701
  8. C. Fronsdal, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966. 
  9. N. Mukunda, R. O'Raifeartaigh and E.C.G. Sudarshan, Phys. Rev. Letters, t. 15, 1965, p. 1041. MR191448
  10. Y. Nambu, Relativistic Wave Equations for Particles with Internal Structure and Mass Spectrum, University of Chicago, preprint 1966. Zbl0161.23203
  11. Proceedings of the Milwaukee Conference of Non-compact groups in Particle Physics, Y. Chow (editor), W. A. Benjamin and Co., New York, 1966. Zbl0148.00205
  12. E.H. Roffmann, Phys. Rev. Letters, t. 16, 1966, p. 210. MR195489
  13. G. Rueg, W. Rühl and T.S. Santhanam, The SU(6) Model and its Relativistic Generalizations, CERN report 66/1106-5-Th 709, 1966. 
  14. A. Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc. (London), t. 284 A, 1965, p. 146. MR172636
  15. E.C. Sudarshan, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966. 
  16. [2] H. Joos, Fortschr. d. Phys., t. 10, 1962, p. 65 and Lectures in Theoretical Physics, vol. VII A, p. 132, Boulder, University of Colorado, edited by W. E. Brittin and A. O. Barut, 1965. MR195408
  17. L. Sertorio and M. Toller, Nuovo Cimento, t. 33, 1964, p. 413. MR187682
  18. M. Toller, Nuovo Cimento, t. 37, 1965, p. 631. MR194073
  19. F.T. Hadjioiannou, Nuovo Cimento, t. 44, 1966, p. 185. 
  20. J.F. Boyce, J. Math. Phys., t. 8, 1967, p. 675. 
  21. [3] M.L. Whippman, J. Math. Phys., t. 6, 1965, p. 1534. Zbl0134.03401MR182376
  22. A. Navon and J. Patera, J. Math. Phys., t. 8, 1967, p. 489. Zbl0158.03102MR213478
  23. O. Nachtman, Unitary representation of SO(p, q), SU(p, q) groups. University of Vienna prepreint, 1965. 
  24. [4] J. Niederle, J. Math. Phys., t. 8, 1968, p. 1921. Zbl0173.30103
  25. [5] N.Z. Evans, J. Math. Phys., t. 8, 1967, p. 170. Zbl0149.21703
  26. A. Sciarrino and M. Toller, On the decomposition of the unitary representations of the group SL(2, c) restricted to the subgroup SU(1, 1). Internal report No. 108, Istituto di Fisica « G. Marconi »;, Roma, 1966. Zbl0163.22905
  27. N. Mukunda, Unitary representations of the group SO(2, 1) in an SO(1, 1) basis. Syracuse University preprint 1206-SU-103, Syracuse, 1967. MR223489
  28. N. Mukunda, Unitary Representations of the Homogeneous Lorentz Group in an SO(2, 1) basis. Syracuse University preprint 1206-SU-106, Syracuse, 1967. 
  29. N. Mukunda, Zero mass representations of the Poincaré group in an SO(3, 1) basis. Syracuse University preprint 1206-SU-107, Syracuse, 1967. 
  30. N. Mukunda, Unitary Representations of the Lorentz group: Reduction of the Supplementary Series under a Non-compact Subgroup. Syracuse University preprint 1206-SU-112, Syracuse, 1967. MR227317
  31. C. Fronsdal, On the Supplementary Series of Representations of Semi-simple Non-compact Groups. ICTP Internal Report 15/1967, Trieste, 1967. 
  32. L. Castell, The Physical Aspects of the Conformal Group SO0(4, 2). ICTP preprint IC/67/66, Trieste, 1967. 
  33. [6] R. Raczka, N. Limić, J. Niederle, J. Math. Phys., t. 7, 1966, p. 1861. Zbl0163.22802MR206146
  34. [7] N. Limić, J. Niederle, R. Raczka, J. Math. Phys., t. 7, 1966, p. 2026. Zbl0158.45805MR206147
  35. [8] N. Limić, J. Niederle and R. Raczka, J. Math. Phys., t. 8, 1967, p. 1091. MR218487
  36. [9] The group G is unimodular if | det AdG(g) | = 1 for all g ∈ G, where AdG(g) is the automorphism of the Lie algebra g of the group G defined by AdG(g): g ∋ X → AdG(g)X = dI(g)eX and I(g) is the inner isomorphism of G onto itself. The group SO0(r, s) is a semi-simple (in fact simple) Lie group, hence unimodular. For the group G = Tm+n-2 s SO0(m - 1, n - 1) we also have | det AdG(g) | = 1, as follows from the following argument. G is a connected group and therefore every neighbourhood U(e) of the identity element e ∈ G generates the whole group G. As G ∋ g → Ad(g) ∈ GL(g) is the homomorphism, it suffices to prove that | det Ad(g) | = 1 for a g ∈ U(e). We choose such U(e) for which a neighbourhood V(o) ∈ g exists such that V(0) ∋ X → exp X ∈ U(e) is the diffeomorphism. Then for every g = exp X ∈ U(e) we have | det Ad (exp X) | = exp { TradX }. In the basis of the Lie algebra of the considered group G, which is the union of the basis of Lie algebras of the groups Tm+n-2 and SO0(m - 1, n — 1), one easily calculates that Tr adX = 0. 
  37. [10] A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann, Paris, 1940. See also S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962. Zbl0063.08195JFM66.1205.02
  38. [11] The Hilbert space h(M) is a Hilbert space vector of which the equivalence classes of complex valued measurable functions f(p) on M such that and the scalar product is defined by Addition of vectors and multiplication of vectors by complex numbers is defined as the corresponding operations with the complex valued functions. 
  39. [12] The invariant C2 is a Casimir operator gμνXμXν where gμν is the Cartan metric tensor of the Lie algebra s0(m, n) in a basis X1, X2, ..., X[m+n 2]. 
  40. [13] Here and elsewhere we use brackets for indices defined as follows: 
  41. [14] For instance all UI representations of the group SO0(m, n) m ≥ n ≥ 2 related with three homogeneous spaces M which are classified by the same real number λ ∈ (0, ∞) and the same eigenvalue of the operator P are equivalent. 
  42. [15] E.C. Titchmarsh, Eigenfunction expansions, Part I, Clarendon Press, Oxford, 1962. Zbl0099.05201MR176151
  43. [16] N.J. Vilenkin, Special functions and theory of group representation, NA UKA, Moscow, 1965 (In Russian). Zbl0144.38003MR209523

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.