Canonical dynamics of relativistic charged particles
Annales de l'I.H.P. Physique théorique (1971)
- Volume: 15, Issue: 3, page 177-187
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] R. Abraham and J.E. Marsden, Foundations of mechanics. Benjamin, New York and Amsterdam, 1967. Zbl0158.42901
- [2] C. Godbillon, Géométrie différentielle et mécanique analytique. Hermann, Paris, 1969. Zbl0174.24602MR242081
- [3] J.M. Souriau, Structure des systèmes dynamiques. Dunod, Paris, 1970. Zbl0186.58001MR260238
- [4] P.G. Bergmann, Introduction to the theory of relativity. Prentice-Hall, Englewood Cliffs, N. J., 1942. Zbl68.0633.01MR6876JFM68.0633.01
- [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Interscience, New York, London, Sydney, 1963. Zbl0119.37502MR152974
- [6] N. Bourbaki, Éléments de mathématique, vol. XXXIII, Variétés différentielles et analytiques.Hermann, Paris, 1967.
- [7] F. Brickell and R.S. Clark, Differentiable manifolds, an introduction. Van Nostrand Reinhold, London, 1970. Zbl0199.56303
Citations in EuDML Documents
top- Maria Rosa Menzio, W. M. Tulczyjew, Infinitesimal symplectic relations and generalized hamiltonian dynamics
- J. Śniatycki, W. M. Tulczyjew, Canonical formulation of newtonian dynamics
- Toshihiro Iwai, Symmetries in relativistic dynamics of a charged particle
- W. M. Tulczyjew, The Legendre transformation
- Jedrzej Śniatycki, Dirac brackets in geometric dynamics
- W. M. Tulczyjew, Gauge independent formulation of dynamics of charged extended objects