On a differential equation approach to quantum field theory : scattering for Thirring's model

Piero de Mottoni

Annales de l'I.H.P. Physique théorique (1972)

  • Volume: 16, Issue: 4, page 265-277
  • ISSN: 0246-0211

How to cite

top

de Mottoni, Piero. "On a differential equation approach to quantum field theory : scattering for Thirring's model." Annales de l'I.H.P. Physique théorique 16.4 (1972): 265-277. <http://eudml.org/doc/75740>.

@article{deMottoni1972,
author = {de Mottoni, Piero},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {265-277},
publisher = {Gauthier-Villars},
title = {On a differential equation approach to quantum field theory : scattering for Thirring's model},
url = {http://eudml.org/doc/75740},
volume = {16},
year = {1972},
}

TY - JOUR
AU - de Mottoni, Piero
TI - On a differential equation approach to quantum field theory : scattering for Thirring's model
JO - Annales de l'I.H.P. Physique théorique
PY - 1972
PB - Gauthier-Villars
VL - 16
IS - 4
SP - 265
EP - 277
LA - eng
UR - http://eudml.org/doc/75740
ER -

References

top
  1. [1] J. Glimm and A. Jaffe, A λ Φ4 theory without cutoffs : I (Phys, Rev., vol. 176, 1968, p. 1945-1951). Id., The (λ Φ4)2 quantum field theory without cutoffs : II. The field operators and the approximate vaccuum (Ann. of Math., vol. 91, 1970, p. 362-401). Id., The (λ Φ4)2 quantum theory without cutoffs : III. The physical vacuum (Acta Mathem., vol. 125, 1970, p. 203-267). Zbl0177.28203
  2. [2] I. Segal, Non-linear semi-groups (Ann. of Math., vol. 78, 1963, p. 339-364). Id., Non-linear partial differential equations in quantum field theory (Symp. Appl. Math., vol. 17, 1965, p. 210-226). Id., Notes towards the construction of non-linear relativistic quantum fields, I (Proc. N. A. S., vol. 57, 1967, p. 1178-1183). Zbl0204.16004MR152908
  3. [3] E. Salusti and A. Tesei, On a semi-group approach to quantum field equations (Nuovo Cimento, vol. 2 A, 1971, p. 122-138). MR275807
  4. [4] P. De Mottoni and E. Salusti, On a differential equation approach to quantum field theory : causality property for the solutions of Thirring's model (Ann. Inst. Henri Poincaré, t. A 15, 1971, p. 363-372). Zbl0226.35084
  5. [5] W.A. Strauss, Decay and Asymptotics for □u = F (u) (J. Funct. Anal., vol. 2, 1968, p. 409-457). Zbl0182.13602MR233062
  6. [6] V. Glaser, An explicit solution of the Thirring Model (Nuovo Cimento, vol. 9, 1958, p. 990-1006). Zbl0082.22302MR99857
  7. [7] F. Browder, Non-linear equations of evolution (Ann. of Math., vol. 80, 1964, p. 485-523). Zbl0127.33602MR173960
  8. [8] J.M. Jauch, Theory of the scattering operator (Helv. Phys. Acta, vol. 31, 1958, p. 127-158). Zbl0081.43304MR94163
  9. [9] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin-Heidelberg, 1966. Zbl0148.12601MR203473
  10. [10] E. Prugovečki, Quantum mechanics in Hilbert space, Academic Press, New York and London, 1971. Zbl0217.44204MR495809
  11. [11] P.D. Lax and R.S. Phillips, Scattering Theory, Academic Press, New York and London, 1967. Zbl0186.16301
  12. [12] A.R. Brodsky, The existence of wave operators for non-linear equations (Pacif. J. Math., vol. 19, 1966, p. 1-12). Zbl0151.20901MR203214
  13. [13] G. Da Prato, Somme d'applications non linéaires dans des cônes et équations d'évolutions dans des espaces d'opérateurs (J. Math. pures et appl., t. 49, 1970, p. 289-348). Zbl0236.47056MR513091
  14. [14] M. Iannelli, A note on some non-linear non-contraction semigroups (Boll. U. M. I., vol. 6, 1970, p. 1015-1025). Zbl0207.14001MR276822
  15. [15] W.E. Thirring, A soluble relativistic field theory (Ann. Phys., vol. 3, 1958, p. 91-112). Zbl0078.44303MR91788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.