On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension 3 and 4 by means of real, irreducible tensors of rank p

Dieter W. Ebner

Annales de l'I.H.P. Physique théorique (1973)

  • Volume: 18, Issue: 4, page 367-378
  • ISSN: 0246-0211

How to cite

top

Ebner, Dieter W.. "On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension 3 and 4 by means of real, irreducible tensors of rank p." Annales de l'I.H.P. Physique théorique 18.4 (1973): 367-378. <http://eudml.org/doc/75782>.

@article{Ebner1973,
author = {Ebner, Dieter W.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {367-378},
publisher = {Gauthier-Villars},
title = {On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension 3 and 4 by means of real, irreducible tensors of rank p},
url = {http://eudml.org/doc/75782},
volume = {18},
year = {1973},
}

TY - JOUR
AU - Ebner, Dieter W.
TI - On the existence of a geometrical interpretation of spinors of the various pseudo-euclidean spaces of dimension 3 and 4 by means of real, irreducible tensors of rank p
JO - Annales de l'I.H.P. Physique théorique
PY - 1973
PB - Gauthier-Villars
VL - 18
IS - 4
SP - 367
EP - 378
LA - eng
UR - http://eudml.org/doc/75782
ER -

References

top
  1. [1] Él. Cartan, The Theory of Spinors, Hermann, Paris, 1966 (printed from the notes of Cartan's lectures, gathered and arranged by André Mercier). Zbl0147.40101
  2. [2] M.F. Atiyah, Bott and Shapiro, Clifford modules (Topology, 3/1, 1964). Zbl0146.19001MR167985
  3. [3] Cl. Chevalley, The Algebraic Theory of Spinors, Columbia Press, 1954. Zbl0057.25901MR60497
  4. [4] C.M. De Witt [Ed.], Batelle Rencontres, 1967, Lectures in Mathematics and Physics, W. A. Benjamin Inc. (see R. Penrose, The Structure of Space Time). Zbl0167.00207
  5. [5] H. Freudenthal and H. De Vries, Linear Lie Groups, Academic Press, New York, London, 1969. Zbl0377.22001MR260926
  6. [6] R. Penrose, Angular Momentum : An Approach to Combinatorial Space–Time. In Quantum Theory and Beyond (T. Bastin, Ed.), Cambridge, 1971. 
  7. [7] W. Heisenberg, Einführung in die einheitliche Feldtheorie der Elementarteilchen, S. Hirzel Verlag, Stuttgart, 1962. 
  8. [8] C.F. Von Weizsäcker, Die Quantentheorie der einfachen Alternative, Komplementarität und Logik, I I (Zeitschrift f. Naturforschung, 13 a, 1958, p. 245). Zbl0133.45104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.