Prolongement des structures spinorielles

Iulian Popovici; Adriana Turtoi

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 20, Issue: 1, page 21-39
  • ISSN: 0246-0211

How to cite

top

Popovici, Iulian, and Turtoi, Adriana. "Prolongement des structures spinorielles." Annales de l'I.H.P. Physique théorique 20.1 (1974): 21-39. <http://eudml.org/doc/75795>.

@article{Popovici1974,
author = {Popovici, Iulian, Turtoi, Adriana},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {1},
pages = {21-39},
publisher = {Gauthier-Villars},
title = {Prolongement des structures spinorielles},
url = {http://eudml.org/doc/75795},
volume = {20},
year = {1974},
}

TY - JOUR
AU - Popovici, Iulian
AU - Turtoi, Adriana
TI - Prolongement des structures spinorielles
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 20
IS - 1
SP - 21
EP - 39
LA - fre
UR - http://eudml.org/doc/75795
ER -

References

top
  1. [1] M. Atiyah, R. Bott et A. Shapiro, Clifford moduls, Topology, t. 3, Suppl. 1, 1964, p. 3-38. Zbl0146.19001MR167985
  2. [2] A. Crumeyrolle, Structures spinorielles, Ann. Inst. H. Poincaré, t. 11, 1, 1969, p. 19-25. Zbl0188.26102MR271856
  3. [3] A. Crumeyrolle, Groupes de spinorialité, Ann. Inst. H. Poincaré, t. 14, 4, 1971, p. 309- 323. Zbl0221.53046MR300213
  4. [4] R. Geroch, Spinor structure of space-times in general relativity, I. J. Math. Phys., t. 9, 1968, p. 1739-1744; II. Ibd., t. 11, 1970, p. 342-348. Zbl0165.29402MR234703
  5. [5] S. Kobayashi et K. Nomizu, Fundations of differential geometry, I. New York, 1963. Zbl0119.37502
  6. [6] A. Lichnerowicz, Théorie des connexions et des groupes d'holonomie. Cremonese, Rome, 1955. Zbl0116.39101
  7. [7] A. Lichnerowicz, Les spineurs en relativité générale. Conf. Sem. Mat. Univ. Bari, t. 79, 1962, p. 1-15. Zbl0107.22402MR178943
  8. [8] A. Lichnerowicz, Champs spinoriels et propagateurs en relativité générale. Bull. Soc. Math. France, t. 92, 1964, p. 11-100. Zbl0138.44301MR169667
  9. [9] J. Milnor, Spin structures on manifolds, Genève, 1962. Zbl0116.40403MR157388
  10. [10] K. Morinaga et T. Nôno, On the linearization of a form of higher degree and its representation. J. Sci. Hiroshima Univ., t. 16, 1, 1952, p. 13-41. Zbl0049.02502MR59259
  11. [11] A.O. Morris, On a generalized Clifford algebra, I. Quart. J. Math. Oxford, t. 18, 1967, p. 7-12 ; II. Ibd., t. 19, 1968, p. 289-299. Zbl0173.03501
  12. [12] R. Penrose, A spinor approach to general relativity. Ann. Phis. Princeton, t. 10, 1960, p. 171-201. Zbl0091.21404MR115765
  13. [13] I. Popovici et C. Gheorghe, Algèbres de Clifford généralisées. C. R. Acad. Sci. Paris, t. 262, 1966, p. 682-685. Zbl0141.03105MR200298
  14. [14] I. Popovici, Graduations maximales normées. Rev. Roum. Math. pures et appl., t. 14, 8, 1969, p. 1187-1200. Zbl0192.37303MR258899
  15. [15] I. Popovici, Une classe de graduations maximales. Rev. Roum. Math. pures et appl., t. 17, 1, 1972, p. 77-85. Zbl0231.16006MR323832
  16. [16] A. Ramakrishnan, P.S. Chandrasekaran, N.R. Ranganathan, T.S. Santhanam et R. Vasudevan, The generalized Clifford algebra and the unitary group. J. Math. Anal. and appl., t. 27, 1969, p. 164-171. Zbl0186.58402MR246903
  17. [17] S. Sasaki, On the differential geometry of tangent bundles of Riemannien manifolds. Tohoku Math. J., t. 10, 1958, p. 338-354. Zbl0086.15003MR112152
  18. [18] K. Yano et S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles. J. Math. Soc. Japan, t. 18, 1966, p. 194-210. Zbl0141.38702MR193596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.