Rigorous absolute bounds for pion-pion scattering. II. Solving modified Szegö-Meiman problems

G. Auberson; L. Epele; G. Mahoux; F. R. A. Simão

Annales de l'I.H.P. Physique théorique (1975)

  • Volume: 22, Issue: 4, page 317-366
  • ISSN: 0246-0211

How to cite

top

Auberson, G., et al. "Rigorous absolute bounds for pion-pion scattering. II. Solving modified Szegö-Meiman problems." Annales de l'I.H.P. Physique théorique 22.4 (1975): 317-366. <http://eudml.org/doc/75858>.

@article{Auberson1975,
author = {Auberson, G., Epele, L., Mahoux, G., Simão, F. R. A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {317-366},
publisher = {Gauthier-Villars},
title = {Rigorous absolute bounds for pion-pion scattering. II. Solving modified Szegö-Meiman problems},
url = {http://eudml.org/doc/75858},
volume = {22},
year = {1975},
}

TY - JOUR
AU - Auberson, G.
AU - Epele, L.
AU - Mahoux, G.
AU - Simão, F. R. A.
TI - Rigorous absolute bounds for pion-pion scattering. II. Solving modified Szegö-Meiman problems
JO - Annales de l'I.H.P. Physique théorique
PY - 1975
PB - Gauthier-Villars
VL - 22
IS - 4
SP - 317
EP - 366
LA - eng
UR - http://eudml.org/doc/75858
ER -

References

top
  1. [1] G. Auberson, L. Epele, G. Mahoux and F.R.A. Simão, Nucl. Phys., B73, 1974, p. 314. 
  2. [2] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, Rhode Island (1967), Chap. XIII. Zbl0023.21505MR310533JFM65.0278.03
  3. N.N. Meiman, J. E. T. P. (Sov. Phys.), t. 17, 1963, p. 830. Zbl0145.46804MR157622
  4. [3] L. Lukaszuk, Nuovo Cimento, t. 51A, 1966, p. 67. MR205610
  5. L. Lukaszuk and A. Martin, Nuovo Cimento, t. 52A, 1967, p. 122. 
  6. [4] P.L. Duren, Theory of Hp Spaces, Academic Press, New York and London, 1970. Zbl0215.20203MR268655
  7. [5] See e. g., ref. [4], section 7.1. 
  8. [6] See also : C. Bourrely, Nucl. Phys., B43, 1972, p. 434. 
  9. S. Okubo, J. Math. Phys., t. 15, 1974, p. 963. Zbl0282.30032MR345550
  10. [7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. Zbl0117.34001MR133008
  11. W. Rudin, Real and Complex Analysis, International Student Edition, McGraw–Hill, London, 1970. 
  12. [8] See e. g.: M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York and London, 1972, section V. 7. Zbl0242.46001MR493419
  13. [9] N.I. Muskhelishvili, Singular Integral Equations, P. Noordhoff N. V., Groningen- Holland, 1953, Chap. 5, § 19. See also, ref. [4], theorem 5.8. Zbl0051.33203MR58845
  14. [10] See ref. [4], corollary2, p. 5. 
  15. [11] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1958, section 5.72. MR1349110
  16. [12] A.I. Markushevich, Theory of Functions of a Complex Variable, Vol. II, Prentice–Hall, Inc., Englewood Cliffs, N. J., 1965, theorem 7.5. Zbl0142.32602MR181738

NotesEmbed ?

top

You must be logged in to post comments.