Matrix canonical realizations of the Lie algebra o ( m , n ) . I. Basic formulæ and classification

M. Havlíček; P. Exner

Annales de l'I.H.P. Physique théorique (1975)

  • Volume: 23, Issue: 4, page 335-347
  • ISSN: 0246-0211

How to cite

top

Havlíček, M., and Exner, P.. "Matrix canonical realizations of the Lie algebra $o(m, n)$. I. Basic formulæ and classification." Annales de l'I.H.P. Physique théorique 23.4 (1975): 335-347. <http://eudml.org/doc/75879>.

@article{Havlíček1975,
author = {Havlíček, M., Exner, P.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {335-347},
publisher = {Gauthier-Villars},
title = {Matrix canonical realizations of the Lie algebra $o(m, n)$. I. Basic formulæ and classification},
url = {http://eudml.org/doc/75879},
volume = {23},
year = {1975},
}

TY - JOUR
AU - Havlíček, M.
AU - Exner, P.
TI - Matrix canonical realizations of the Lie algebra $o(m, n)$. I. Basic formulæ and classification
JO - Annales de l'I.H.P. Physique théorique
PY - 1975
PB - Gauthier-Villars
VL - 23
IS - 4
SP - 335
EP - 347
LA - eng
UR - http://eudml.org/doc/75879
ER -

References

top
  1. [1] M. Havlicek and P. Exner, On the minimal canonical realizations of the Lie algebra OC(n). Ann. Inst. H. Poincaré, t. 23, Sect. A, n° 4, 1975, p. 311. Zbl0325.17001
  2. [2] A. Joseph, Commun. math. Phys., t. 36, 1974, p. 325. Zbl0285.17007MR342049
  3. [3] J.L. Richard, Ann. Inst. H. Poincaré, t. 8, Sect. A, n° 3, 1968, p. 301. Zbl0161.23705
  4. [4] A. Joseph, J. Math. Phys., t. 13, 1972, p. 351. Zbl0238.17004
  5. [5] N. Jacobson, Lie algebras, Mir, Moskva, 1964 (in Russian). Zbl0121.27601MR178096
  6. [6] D.L. Zhelobenko, Kompaktnyje gruppy Li i ich predstavlenija. Nauka, Moskva, 1970. Zbl0228.22013
  7. [7] N. Jacobson, The theory of rings, Gos. izd. in. lit., Moskva, 1947 (in Russian). Zbl0029.10601
  8. [8] E. Nelson, Ann. Math., t. 70, n° 3, 1959, p. 572. J. Simon, Commun. math. Phys., t. 28, 1972, p. 39. M. Havlicek, Remark on the integrability of some representations of the semi–simple Lie algebras. Rep. Math. Phys., to appear. Zbl0091.10704MR107176
  9. [9] H.D. Doebner and O. Melsheimer, Nuovo Cim., Ser. 10, t. 49, 1967, p. 73. Zbl0163.22504MR213110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.