Convergence and accuracy of approximation methods in general relativity. The time-independent case
Annales de l'I.H.P. Physique théorique (1976)
- Volume: 24, Issue: 4, page 367-391
- ISSN: 0246-0211
Access Full Article
topHow to cite
topFrehland, Eckart. "Convergence and accuracy of approximation methods in general relativity. The time-independent case." Annales de l'I.H.P. Physique théorique 24.4 (1976): 367-391. <http://eudml.org/doc/75903>.
@article{Frehland1976,
author = {Frehland, Eckart},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {367-391},
publisher = {Gauthier-Villars},
title = {Convergence and accuracy of approximation methods in general relativity. The time-independent case},
url = {http://eudml.org/doc/75903},
volume = {24},
year = {1976},
}
TY - JOUR
AU - Frehland, Eckart
TI - Convergence and accuracy of approximation methods in general relativity. The time-independent case
JO - Annales de l'I.H.P. Physique théorique
PY - 1976
PB - Gauthier-Villars
VL - 24
IS - 4
SP - 367
EP - 391
LA - eng
UR - http://eudml.org/doc/75903
ER -
References
top- [1] A.E. Fischer and J.E. Marsden, New Theoretical Techniques in the Study of Gravity. GRG, t. 4, 1973, p. 309-317. Zbl0351.35060MR401038
- [2] A.E. Fischer and J.E. Marsden, The Einstein Evolution Equations as a First-Order Quasi-Linear Symmetric Hyperbolic System, I. Commun. math. Phys., t. 28, 1972, p. 1-38. Zbl0247.35082MR309507
- [3] A.E. Fischer and J.E. Marsden, Linearization Stability of the Einstein EquationsBull. Am. Math. Soc., t. 79, 1973, p. 997-1003. Zbl0274.58003MR426035
- [4] Y. Choquet-Bruhat, Espace-temps einsteiniens généraux, chocs gravitationnels. Ann. Inst. Henri Poincaré, t. 8, 1968, p. 327-338. Zbl0162.29703MR233576
- [5] Y. Choquet-Bruhat, Solutions C d'équations hyperboliques non linéaires. C. R. Acad. Sci. Paris, t. 272, 1971, p. 386-388. Zbl0216.12902MR279444
- [6] Y. Choquet-Bruhat and S. Deser, On the Stability of flat space. Ann. of Phys., t. 81, 1973, p. 165-178. Zbl0265.35059MR341358
- [7] O. Hölder, Beiträge zur Potentialtheorie. Dissertation, Tübingen, 1882.
- [8] N.M. Günter, Die Potentialtheorie und ihre Anwendung auf Grundsatzaufgaben der mathematischenPhysik.Leipzig, 1957. Zbl0077.09702
- [9] O.D. Kellog, Foundations of Potential Theory. Berlin, Heidelberg, New York, 1967. Zbl0152.31301MR222317
- [10] D.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear elliptic equations. New York, London, 1968. Zbl0164.13002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.