Théorie de la diffusion pour l'équation de sinus-Gordon à trois dimensions

Ph. Blanchard; M. Reed

Annales de l'I.H.P. Physique théorique (1977)

  • Volume: 26, Issue: 2, page 163-180
  • ISSN: 0246-0211

How to cite

top

Blanchard, Ph., and Reed, M.. "Théorie de la diffusion pour l'équation de sinus-Gordon à trois dimensions." Annales de l'I.H.P. Physique théorique 26.2 (1977): 163-180. <http://eudml.org/doc/75931>.

@article{Blanchard1977,
author = {Blanchard, Ph., Reed, M.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {2},
pages = {163-180},
publisher = {Gauthier-Villars},
title = {Théorie de la diffusion pour l'équation de sinus-Gordon à trois dimensions},
url = {http://eudml.org/doc/75931},
volume = {26},
year = {1977},
}

TY - JOUR
AU - Blanchard, Ph.
AU - Reed, M.
TI - Théorie de la diffusion pour l'équation de sinus-Gordon à trois dimensions
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 26
IS - 2
SP - 163
EP - 180
LA - fre
UR - http://eudml.org/doc/75931
ER -

References

top
  1. [1] I. Segal, The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Mathématique de France, t. 91, 1963, p. 129-135. Zbl0178.45403MR153967
  2. [2] C. Morawetz et W. Strauss, Decay and scattering of solutions of a non linear relativistic wave equation. Commun. Pure and Applied Math., t. 25, 1972, p. 1-31. Zbl0228.35055MR303097
  3. [3] M. Reed, Abstract non-linear wave equations. Springer lecture notes, n° 507, 1976. Zbl0317.35002MR605679
  4. [4] M. Reed et B. Simon, Methods of Modern Mathematical Physics, Vol. III : Analysis of operators. Academic Press, New York, à paraître. Zbl0405.47007
  5. [5] M. Reed et B. Simon, Methods of Modern Mathematical Physics, Vol. I ; Functional Analysis, Academic Press, New York, 1972. Zbl0242.46001
  6. [6] A. Friedman, Partial differential equations. Holt-Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
  7. [7] R. Courant et D. Hilbert, Methods of mathematical physics, Vol. II, Interscience, New York, 1962. Zbl0099.29504MR65391
  8. [8] C. Scott, F. Chu, D. Mac Laughlin, The soliton: a new concept in applied science. Proc. I. E. E. E., t. 61, 1973, p. 1443-1448. MR358045
  9. [9] W. Strauss, Non linear scattering theory, dansScattering Theory in Mathematical Physics, édité par J. A. Lavita et J. P. Marchand, Reidel, Holland, 1974, p. 53-78. 
  10. [10] I. Segal, Quantization and dispersion for non-linear relativistic equations. Proc. Conference on Math., Theory Elem. Part. M. I. T. PressCambridge, 1966, p. 79-108. MR217453
  11. [11] M. Reed, Higher order estimates and smoothness of non-linear wave equations. Proc. Amer. Math. Soc., t. 51, 1975, p. 79-85. Zbl0309.35044MR377238
  12. [12] M. Reed et B. Simon, Methods of Modern Mathematical Physics, Vol. II, Fourier Analysis and Self-adjointness, Academic Press, New York, 1975. Zbl0308.47002
  13. [13] I. Segal, Non linear semi-groups. Ann. Math., t. 78, 1963, p. 339-364. Zbl0204.16004MR152908
  14. [14] C. Morawetz et W. Strauss, On a non-linear scattering operator. Comm. Pure Appl. Math., t. 26, 1973, p. 47-54. Zbl0265.35057
  15. [15] F. Browder, On non-linear wave equations. Math. Zeit., t. 80, 1962, p. 249-264. Zbl0109.32102MR147769
  16. [16] W. von Wahl, Klassische Lösungen nichtlinearer Wellengleichungen im Grossen. Math. Zeit., t. 112, 1969, p. 241-279. Zbl0177.36602MR280892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.