The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy

H. J. Borchers

Annales de l'I.H.P. Physique théorique (1977)

  • Volume: 27, Issue: 1, page 31-60
  • ISSN: 0246-0211

How to cite

top

Borchers, H. J.. "The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy." Annales de l'I.H.P. Physique théorique 27.1 (1977): 31-60. <http://eudml.org/doc/75948>.

@article{Borchers1977,
author = {Borchers, H. J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {31-60},
publisher = {Gauthier-Villars},
title = {The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy},
url = {http://eudml.org/doc/75948},
volume = {27},
year = {1977},
}

TY - JOUR
AU - Borchers, H. J.
TI - The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 27
IS - 1
SP - 31
EP - 60
LA - eng
UR - http://eudml.org/doc/75948
ER -

References

top
  1. [1] H.J. Borchers and J. Yngvason, Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points. Commun. Math. Phys., t. 47, 1976, p. 197. Zbl0319.46060MR479134
  2. [2] H. Bremermann, Ueber die Aequivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann., t. 128, 1954, p. 63. Zbl0056.07801MR71088
  3. [3] H. Bremermann, Complex convexity. Trans. Amer. Math. Soc., t. 82, 1956, p. 17. Zbl0070.30402MR79100
  4. [4] H. Bremermann, On the conjecture of the equivalence of pluri-subharmonic functions and the Hartogs functions. Math. Ann., t. 131, 1956, p. 76. Zbl0070.07603MR77644
  5. [5] H. Grauert und F. Fritsche, Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer, Berlin, Heidelberg, New York, 1974. Zbl0285.32001MR372232
  6. [6] L. Hörmander, An introduction to complex analysis in several variables. D. van Nostrand, Princeton, N. J., 1966. Zbl0138.06203MR203075
  7. [7] H. Meschkowski, Hilbertsche Räume mit Kernfunktionen. Springer, Berlin, Göttingen, Heidelberg, 1962. Zbl0103.08802MR140912
  8. [8] A. Pietsch, Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin, 1969. Zbl0184.14602MR181888

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.