The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy
Annales de l'I.H.P. Physique théorique (1977)
- Volume: 27, Issue: 1, page 31-60
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBorchers, H. J.. "The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy." Annales de l'I.H.P. Physique théorique 27.1 (1977): 31-60. <http://eudml.org/doc/75948>.
@article{Borchers1977,
author = {Borchers, H. J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {31-60},
publisher = {Gauthier-Villars},
title = {The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy},
url = {http://eudml.org/doc/75948},
volume = {27},
year = {1977},
}
TY - JOUR
AU - Borchers, H. J.
TI - The generalized three circle- and other convexity theorems with application to the construction of envelopes of holomorphy
JO - Annales de l'I.H.P. Physique théorique
PY - 1977
PB - Gauthier-Villars
VL - 27
IS - 1
SP - 31
EP - 60
LA - eng
UR - http://eudml.org/doc/75948
ER -
References
top- [1] H.J. Borchers and J. Yngvason, Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points. Commun. Math. Phys., t. 47, 1976, p. 197. Zbl0319.46060MR479134
- [2] H. Bremermann, Ueber die Aequivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann., t. 128, 1954, p. 63. Zbl0056.07801MR71088
- [3] H. Bremermann, Complex convexity. Trans. Amer. Math. Soc., t. 82, 1956, p. 17. Zbl0070.30402MR79100
- [4] H. Bremermann, On the conjecture of the equivalence of pluri-subharmonic functions and the Hartogs functions. Math. Ann., t. 131, 1956, p. 76. Zbl0070.07603MR77644
- [5] H. Grauert und F. Fritsche, Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer, Berlin, Heidelberg, New York, 1974. Zbl0285.32001MR372232
- [6] L. Hörmander, An introduction to complex analysis in several variables. D. van Nostrand, Princeton, N. J., 1966. Zbl0138.06203MR203075
- [7] H. Meschkowski, Hilbertsche Räume mit Kernfunktionen. Springer, Berlin, Göttingen, Heidelberg, 1962. Zbl0103.08802MR140912
- [8] A. Pietsch, Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin, 1969. Zbl0184.14602MR181888
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.