Sur la quantification d'un système mécanique avec des contraintes de deuxième classe

I. T. Todorov

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 28, Issue: 2, page 207-223
  • ISSN: 0246-0211

How to cite

top

Todorov, I. T.. "Sur la quantification d'un système mécanique avec des contraintes de deuxième classe." Annales de l'I.H.P. Physique théorique 28.2 (1978): 207-223. <http://eudml.org/doc/75979>.

@article{Todorov1978,
author = {Todorov, I. T.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {2},
pages = {207-223},
publisher = {Gauthier-Villars},
title = {Sur la quantification d'un système mécanique avec des contraintes de deuxième classe},
url = {http://eudml.org/doc/75979},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Todorov, I. T.
TI - Sur la quantification d'un système mécanique avec des contraintes de deuxième classe
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 28
IS - 2
SP - 207
EP - 223
LA - fre
UR - http://eudml.org/doc/75979
ER -

References

top
  1. [1] P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, N. Y., 1964). Zbl0141.44603
  2. [2] A.J. Hanson, T. Regge and C. Teitelboim, Constraint Hamiltonian Systems, Institute for Advanced Study, Princeton, preprint 10-74 (1975) et Academia Nazionale dei Lincei, Roma, 1976. 
  3. [3] V. Bargmann and I.T. Todorov, Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(n), J. Math. Phys., t. 18, 1977, p. 1141. Zbl0364.46016MR486330
  4. [4] H. Bacry, The de Sitter group L4,1 and the bound states of hydrogen atom, Nuovo Cimento, t. A 41, 1966, p. 222. H. Bacry, H. Ruegg and J.M. Souriau, Dynamical groups and spherical potentials in classical mechanics, Commun. Math. Phys., t. 3, 1966, p. 323. 
  5. [5] G. Györgyi, Kepler's equation, Fock variables, Bacry's generators and Dirac brackets, Nuovo Cimento, t. 53, 1968, p. 717. G. Györgyi, Integration of the dynamical symmetry group for the - 1/r potential, Acta Phys. Acad. Sci. Hungaricae, t. 27, 1969, p. 435. 
  6. [6] Convegno di Geometria Simplettica e Fisica Matematica, Rome, 1973. v. en particulier, les articles : B. Kostant, Symplectic spinors; D.J. Simms, Geometric quantization of the energy levels in the Kepler problem ; J.M. Souriau, Sur la variété de Kepler ; J. Elhadad, Sur l'interprétation en géométrie symplectique des états quantiques de l'atome d'hydrogène. 
  7. [7] E. Onofri and M. Pauri, Dynamical quantization, J. Math. Phys., t. 13, 1972, p. 533. Zbl0193.53705MR314389
  8. [8] E. Onofri, Dynamical quantization of the Kepler manifold, Università di Parma, preprint IFPR-T-047, 1975. MR395530
  9. [9] E. Onofri, V. Fock, 40 years later, Lecture given at the Conference on Differential Geometric Methods in Mathematical Physics, University of Bonn, July, 1975. 
  10. [10] I.T. Todorov, Quasipotential approach to the two-body problem in quantum field theory. In: Properties of Fundamental Interactions, vol. 9, Part C, ed. A. Zichichi (Editrice Compositori, Bologna, 1973); v. aussi Phys. Rev., t. D 3, 1971, p. 2351. V.A. Rizov, I.T. Todorov and B.L. Aneva, Quasipotential approach for the Coulomb bound state problem for spin 0 and spin 1/2 particles, Nuclear Physics, t. B 98, 1975, p. 447. 2 
  11. [11] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., t. 14, 1961, p. 187 and t. 20, 1967, p. 1. Zbl0107.09102MR157250
  12. [12] T.D. Newton and E.P. Wigner, Localized states for elementary systems, Rev. Mod. Phys., t. 21, 1949, p. 400. A.S. Wightman, On the localizability of quantum mechanical systems, Rev. Mod. Phys., t. 34, 1962, p. 845. Zbl0036.26704
  13. [13] D.G. Currie and T.F. Jordan, Interactions in relativistic classical particle mechanics. In : Lectures in Theoretical Physics, vol. XA Quantum Theory and Statistical Physics, Ed. by A. O. Barut and W. E. Brittin (Gordon and Breach, N. Y., 1968), p. 91-139. 
  14. [14] G. Mack and I.T. Todorov, Irreducibility of the ladder representations of U(2,2) when restricted to the Poincaré subgroup, J. Math. Phys., t. 10, 1969, p. 2078. Zbl0183.29003MR250582
  15. [15] S.P. Alliluev, ZhETF, t. 33, 1957, p. 200 (English Translation : JETP, t. 6, 1958, p. 156). Zbl0081.22301
  16. [16] M. Bander and C. Itzykson, Group theory and the hydrogen atom I, Rev. Mod. Phys., t. 38, 1966, p. 330. MR205613
  17. [17] E.B. Aranson, I.A. Malkin and V.I. Manko, Dynamical symmetries in quantum theory, Sov. J. Particles Nucl., t. 5, 1974, p. 47 (p. 122 dans l'édition russe). MR471683
  18. [18] H.H. Rogers, Symmetry properties of the classical Kepler problem, J. Math. Phys., t. 14, 1973, p. 1125. Zbl0268.70006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.