Differential forms as spinors

Wolfgang Graf

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 1, page 85-109
  • ISSN: 0246-0211

How to cite

top

Graf, Wolfgang. "Differential forms as spinors." Annales de l'I.H.P. Physique théorique 29.1 (1978): 85-109. <http://eudml.org/doc/75997>.

@article{Graf1978,
author = {Graf, Wolfgang},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Dirac Equation; Pseudoriemannian Manifold; Spinors; Minkowski Space; Gravitational Fields},
language = {eng},
number = {1},
pages = {85-109},
publisher = {Gauthier-Villars},
title = {Differential forms as spinors},
url = {http://eudml.org/doc/75997},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Graf, Wolfgang
TI - Differential forms as spinors
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 85
EP - 109
LA - eng
KW - Dirac Equation; Pseudoriemannian Manifold; Spinors; Minkowski Space; Gravitational Fields
UR - http://eudml.org/doc/75997
ER -

References

top
  1. E. Kähler, Innerer and äusserer Differentialkalkül ; Abh. Dt. Akad. Wiss. Berlin, Kl. für Math., Phys. u. Techn., Jahrg.1960, Nr. 4. Die Dirac-Gleichung ; Abh. Dt. Akad. Wiss. Berlin, KI. für Math., Phys. u. Techn., Jahrg.1961, Nr. 1. Der innere Differentialkalkül; Rendiconti di Matematica, (3-4), Vol. 21, 1962, p. 425-523. MR189530
  2. A. Lichnerowicz, Laplacien sur une variété riemannienne et spineurs; Atti Accad. naz. dei Lincei, Rendiconti, t. 33, fsc. 5, 1962, p. 187-191. Champs spinorielles et propagateurs en relativité générale ; Bull. Soc. math. France, t. 92, 1964. p. 11-100. Zbl0118.37601MR155268
  3. R. Brauer and H. Weyl, Spinors in n dimensions: Amer. J. Math., t. 57, 1935. p. 425-449. Zbl0011.24401MR1507084JFM61.1025.06
  4. C. Chevalley, The algebraic theory of spinors; New York: Columbia University Press, 1964. The construction and study of certain important algebras; Publ. Math. Soc. Japan, t. 1, 1955. Zbl0065.01901MR60497
  5. P. Rashevskii, The theory of spinors; Amer. Math. Soc., Translations, Series 2, vol. 6, 1957, p. 1-110. Zbl0077.14901
  6. N. Bourbaki, Algèbre, chap. 3 : algèbre multilinéaire ; Paris : Hermann, 1958.Algèbre, chap. 9 : formes sesquilinéaires et formes quadratiques ; Paris : Hermann. 1959. Zbl0102.25503
  7. M. Atiyah, Vector fields on manifolds; Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Natur-, Ingenieurund Gesellschaftswissenschaften, Heft 200, 1970. Zbl0193.52303MR263102
  8. G. Karrer, Darstellung von Cliffordbündeln ; Ann. Acad. Sci. Fennicae, Series A. I Mathematica, Nr. 521, 1973. Zbl0262.53025MR319095
  9. I. Popovici, Représentations irréductibles des fibrés de Clifford; Ann. Inst. Henri Poincaré, Vol. XXV, n° 1, 1976, p. 35-59. Zbl0337.53036MR425861
  10. D. Kastler. Introduction à l'électrodynamique quantique ; PARIS: DUNOD, 1961. Zbl0098.20004MR144659
  11. B. Van Der Waerden, Algebra. Zweiter Teil ; Berlin, Heidelberg, New York: Springer, 1967. Zbl0192.33002MR233647
  12. A. Crumeyrolle, Structures spinorielles; Ann. Inst. Henri Poincaré, Vol. XI, n° 1. 1969, p. 19-55. Zbl0188.26102MR271856
  13. W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Vol. I: de Rham Cohomology of manifolds and vector bundles; New York and London: Academic Press, 1972. Connections, Curvature and Cohomology, Vol. II: Lie groups, principal bundles and characteristic classes; New York and London: Acad. Press, 1973. Zbl0322.58001MR336650
  14. G. De Rham, Variétés différentiables; Paris: Hermann, 1960. Zbl0089.08105
  15. L. Markus, Line element fields and Lorentz structures on differentiable manifolds; Ann. of Math., t. 62, 1955, p. 411-417. Zbl0065.38802MR73169
  16. W. Greub and H.-R. Petry, Minimal coupling and complex line bundles; J. Math. Phys., t. 16, 1975, p. 1347-1351. MR398363
  17. B. Kostant, Quantization and unitary representations; in Lectures Notes in Mathematics, Vol. 170, 1970, p. 87-208. Zbl0223.53028MR294568
  18. A. Petrov, Einstein-Räume; Berlin: Akademie-Verlag, 1964. Zbl0114.21003MR162594
  19. S. Kobayashi and K. Nomizu, Foundations of differential geometry ; New York, London: Interscience Publishers. 1963 Zbl0119.37502MR152974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.