Completeness of wave operators in two Hilbert spaces

Martin Schechter

Annales de l'I.H.P. Physique théorique (1979)

  • Volume: 30, Issue: 2, page 109-127
  • ISSN: 0246-0211

How to cite

top

Schechter, Martin. "Completeness of wave operators in two Hilbert spaces." Annales de l'I.H.P. Physique théorique 30.2 (1979): 109-127. <http://eudml.org/doc/76021>.

@article{Schechter1979,
author = {Schechter, Martin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {completeness of wave operators; scattering on two Hilbert spaces},
language = {eng},
number = {2},
pages = {109-127},
publisher = {Gauthier-Villars},
title = {Completeness of wave operators in two Hilbert spaces},
url = {http://eudml.org/doc/76021},
volume = {30},
year = {1979},
}

TY - JOUR
AU - Schechter, Martin
TI - Completeness of wave operators in two Hilbert spaces
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 30
IS - 2
SP - 109
EP - 127
LA - eng
KW - completeness of wave operators; scattering on two Hilbert spaces
UR - http://eudml.org/doc/76021
ER -

References

top
  1. [1] Tosio Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
  2. [2] A.L. Belopolskii and M.S. Birman, The existence of wave operators in scattering theory for pairs of spaces, Izv. Akad. Nauk SSSR, t. 32, 1968, p. 1162-1175. Zbl0183.41901MR238101
  3. [3] Tosio Kato, Scattering theory with two Hilbert spaces, J. Func. Anal., t. 1, 1967, p. 342-369. Zbl0171.12303MR220097
  4. [4] Tosio Kato, Two spaces scattering theory, J. Fac. Sci. Univ. Tokyo, t. 24, 1977, p. 503-514. Zbl0395.47007MR512674
  5. [5] M.S. Birman, Scattering problems for differential operators with perturbation of space, Izv. Akad. Nauk SSSR, t. 35, 1971, p. 440-445. Zbl0236.47011MR291868
  6. [6] V.G. Deic, The local stationary method in the theory of scattering with two spaces, Dokl. Akad. Nauk SSSR, t. 197, 1971, p. 1247-1250. Zbl0244.47004MR290174
  7. [7] V.G. Deic, Application of the method of nuclear perturbation in two space scattering theory, Izv. Vyss. Ucebn. Zaved, 1971, p. 33-42. MR293456
  8. [8] Martin Schechter, A unified approach to scattering, J. Math. Pures Appl., t. 53, 1974, p. 373-396. Zbl0304.47010MR365183
  9. [9] Tosio Suzuki, Scattering theory for a certain nonsefadjoint operator, Mem. Fac. L. b. Arts Educ., t. 23, 1974, p. 14-18. 
  10. [10] J.R. Schulenberger and C.H. Wilcox, Completeness of the wave operators for perturbations of uniformly propagative systems, J. Funk. Anal., t. 7, 1971, p. 447-474. Zbl0223.47007MR275221
  11. [11] Tosio Kato and S.T. Kuroda, The abstract theory of scattering, Rocky Mtn. J. Math., t. 1, 1971, p. 127-171. Zbl0241.47005MR385604
  12. [12] Tosio Kato, Wave operators and similarity for some nonselfadjoint operators, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  13. [13] R.B. Lavine, Commutators and scattering theory II, Indiana Univ. Math. J., t. 21, 1972, p. 643-656. Zbl0216.38501MR300134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.