A coordinatewise formulation of geometric quantization
Annales de l'I.H.P. Physique théorique (1979)
- Volume: 31, Issue: 1, page 5-24
- ISSN: 0246-0211
Access Full Article
topHow to cite
topVaisman, Izu. "A coordinatewise formulation of geometric quantization." Annales de l'I.H.P. Physique théorique 31.1 (1979): 5-24. <http://eudml.org/doc/76042>.
@article{Vaisman1979,
author = {Vaisman, Izu},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric quantization via a complex integrable polarization; trivialization of the Kostant-Souriau line bundle; metalinear structures},
language = {eng},
number = {1},
pages = {5-24},
publisher = {Gauthier-Villars},
title = {A coordinatewise formulation of geometric quantization},
url = {http://eudml.org/doc/76042},
volume = {31},
year = {1979},
}
TY - JOUR
AU - Vaisman, Izu
TI - A coordinatewise formulation of geometric quantization
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 5
EP - 24
LA - eng
KW - geometric quantization via a complex integrable polarization; trivialization of the Kostant-Souriau line bundle; metalinear structures
UR - http://eudml.org/doc/76042
ER -
References
top- [1] R.J. Blattner, Quantization and representation theory, in: Harmonic Analysis on Homogeneous Spaces, A. M. S., Proc. Symp. Pure Math., XXVI, 1974, p. 147-165. Zbl0296.53031MR341529
- [2] R. Bott, Lectures on characteristic classes and foliations, in: Lecture Notes in Math., t. 279, Springer-Verlag, Berlin, 1972, p. 1-94. Zbl0241.57010MR362335
- [3] S.S. Chern, Complex manifolds without potential theory. D. Van Nostrand, Comp., Princeton, New Jersey, 1967. Zbl0158.33002MR225346
- [4] L. Nirenberg, A complex Frobenius theorem, in: Sem. on Analytic Functions, Inst. for Adv. Study, Princeton, vol. 1, 1957, p. 172-179. Zbl0099.37502
- [5] D.J. Simms, Metalinear structures and a geometric quantization of the harmonic oscillator, in: Colloque du CNRS, n° 237, Géométrie symplectique et physique mathématique, Aix-en-Provence, 1974, p. 163-173. Zbl0325.53036MR482836
- [6] D.J. Simms and N.M.J. Woodhouse, Lectures on geometric quantization. Lecture Notes in Physics, 53, Springer-Verlag, Berlin, 1976. Zbl0343.53023MR672639
- [7] J. Sniatycki and S. Toporowski, On representation spaces in geometric quantization, Int. J. of Theoretical Physics, t. 16, 1977, p. 615-633. Zbl0396.58008MR523211
- [8] S. Śternberg, Lectures on differential geometry, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976. Zbl0129.13102MR193578
- [9] I. Vaisman, Basic ideas of geometric quantization, Rend. Sem. Mat., Torino (to appear). Zbl0435.58012MR580394
- [10] K. Yano, The theory of Lie derivatives and its applications, North Holland Publ., Amsterdam, 1957. Zbl0077.15802MR88769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.