A coordinatewise formulation of geometric quantization

Izu Vaisman

Annales de l'I.H.P. Physique théorique (1979)

  • Volume: 31, Issue: 1, page 5-24
  • ISSN: 0246-0211

How to cite

top

Vaisman, Izu. "A coordinatewise formulation of geometric quantization." Annales de l'I.H.P. Physique théorique 31.1 (1979): 5-24. <http://eudml.org/doc/76042>.

@article{Vaisman1979,
author = {Vaisman, Izu},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric quantization via a complex integrable polarization; trivialization of the Kostant-Souriau line bundle; metalinear structures},
language = {eng},
number = {1},
pages = {5-24},
publisher = {Gauthier-Villars},
title = {A coordinatewise formulation of geometric quantization},
url = {http://eudml.org/doc/76042},
volume = {31},
year = {1979},
}

TY - JOUR
AU - Vaisman, Izu
TI - A coordinatewise formulation of geometric quantization
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 31
IS - 1
SP - 5
EP - 24
LA - eng
KW - geometric quantization via a complex integrable polarization; trivialization of the Kostant-Souriau line bundle; metalinear structures
UR - http://eudml.org/doc/76042
ER -

References

top
  1. [1] R.J. Blattner, Quantization and representation theory, in: Harmonic Analysis on Homogeneous Spaces, A. M. S., Proc. Symp. Pure Math., XXVI, 1974, p. 147-165. Zbl0296.53031MR341529
  2. [2] R. Bott, Lectures on characteristic classes and foliations, in: Lecture Notes in Math., t. 279, Springer-Verlag, Berlin, 1972, p. 1-94. Zbl0241.57010MR362335
  3. [3] S.S. Chern, Complex manifolds without potential theory. D. Van Nostrand, Comp., Princeton, New Jersey, 1967. Zbl0158.33002MR225346
  4. [4] L. Nirenberg, A complex Frobenius theorem, in: Sem. on Analytic Functions, Inst. for Adv. Study, Princeton, vol. 1, 1957, p. 172-179. Zbl0099.37502
  5. [5] D.J. Simms, Metalinear structures and a geometric quantization of the harmonic oscillator, in: Colloque du CNRS, n° 237, Géométrie symplectique et physique mathématique, Aix-en-Provence, 1974, p. 163-173. Zbl0325.53036MR482836
  6. [6] D.J. Simms and N.M.J. Woodhouse, Lectures on geometric quantization. Lecture Notes in Physics, 53, Springer-Verlag, Berlin, 1976. Zbl0343.53023MR672639
  7. [7] J. Sniatycki and S. Toporowski, On representation spaces in geometric quantization, Int. J. of Theoretical Physics, t. 16, 1977, p. 615-633. Zbl0396.58008MR523211
  8. [8] S. Śternberg, Lectures on differential geometry, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1976. Zbl0129.13102MR193578
  9. [9] I. Vaisman, Basic ideas of geometric quantization, Rend. Sem. Mat., Torino (to appear). Zbl0435.58012MR580394
  10. [10] K. Yano, The theory of Lie derivatives and its applications, North Holland Publ., Amsterdam, 1957. Zbl0077.15802MR88769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.