Magnetic monopoles in curved spacetimes
Annales de l'I.H.P. Physique théorique (1980)
- Volume: 32, Issue: 3, page 283-293
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] G. 't Hooft, Nucl. Phys., t. B 79, 1974, p. 276. A.M. Polyakov, J. E. T. P. Letters, t. 20, 1974, p. 194. B. Julia and A. Zee, Phys. Rev., t. D 11, 1975, p. 2227. F.A. Bais and H.A. Weldon, Phys. Lett., t. 79 B, 1978, p. 297.
- P. Goddard and D.I. Olive, C. E. R. N., TH 2445, 1978.
- [2] E.B. Bogomolny, Sov. J. Nucl. Phys., t. 24, 1976, p. 861.
- S. Coleman, S. Parke, A. Neveu and C.M. Sommerfield, Phys. Rev., t. D 15, 1977, p. 544.
- [3] R. Kerner, Lett. Math. Phys., Vol. 2, n° 1, 1977.
- [4] J.M. Cervero, Harvard University Preprint, 1977.
- [5] H. Boutaleb-Joutei, A. Chakrabarti and A. Comtet, Gauge field configurations in curved spacetimes. I) Phys. Rev., t. D 20, 1979, p. 1884. II) Phys. Rev., t. D 20, 1979, p. 1898. III) Self-dual SU (2) fields in Eguchi-Hanson space. Phys. Rev., t. D 21, 1980, p. 979. IV) Self-dual SU (2) fields in multicentre space. Phys. Rev., t. D 21, 1980, p. 2280. V) Regularity constraints and quantized actions preprint Ecole Polytechnique. Phys. Rev., t. D 21, 1980, p. 2285. MR548063
- [6] A. Bais and R.J. Russell, Phys. Rev., t. D 11, 1975, p. 2692.
- Y.M. Cho and P.G.O. Freund, Phys. Rev., t. D 12, 1975, p. 1588. MR503451
- P. Van Nieuwenhuizen, D. Wilkinson and M.J. Perry, Phys. Rev., t. D 13, 1976, p. 778.
- R. Kerner and E. Maia, Sur le tenseur d'énergie et le champ gravitationnel du monopole magnétique. Comptes Rendus de l'Académie des Sciences, t. 290, Série A, 1980. p. 85. Zbl0435.35076
- [7] M.K. Prasad and C.M. Sommerfield, Phys. Rev. Lett., t. 35, 1975, p. 760.
- [8] D. Wilkinson and A.S. Goldhaber, Phys. Rev., t. D 16, 1977, p. 1221. P. Cordero, C. Teitelboim, Ann. Phys., t. 100, 1976, p. 607.
- [9] One can easily check that these equations are no longer of the Bogomolny type, as they were in the previous case.
- [10] Obviously conformal invariance of the metric does not guarantee that there is a corresponding solution in flat space (actually our lagrangian density is not conformal invariant, an appropriate conformal invariant lagrangian would be obtained by adding a term of the form R/6 Φ2).
- [11] I. Bialynicki-Birula, Lectures notes from Jacca Summer School, 1978. A. Hosoya, Prog. Th. Phys., Vol. 59, 1978, p. 1781.
- H. Poincaré, Rediconti Circolo-Mat., Palermo, t. 21, 1906, p. 129. JFM37.0886.01
- [12] C. Sivaram and K.P. Sinha, Physics Reports, Vol. 51, n° 3, 1979. MR528067