N-body relativistic systems

Ph. Droz-Vincent

Annales de l'I.H.P. Physique théorique (1980)

  • Volume: 32, Issue: 4, page 377-389
  • ISSN: 0246-0211

How to cite

top

Droz-Vincent, Ph.. "N-body relativistic systems." Annales de l'I.H.P. Physique théorique 32.4 (1980): 377-389. <http://eudml.org/doc/76084>.

@article{Droz1980,
author = {Droz-Vincent, Ph.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {377-389},
publisher = {Gauthier-Villars},
title = {N-body relativistic systems},
url = {http://eudml.org/doc/76084},
volume = {32},
year = {1980},
}

TY - JOUR
AU - Droz-Vincent, Ph.
TI - N-body relativistic systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1980
PB - Gauthier-Villars
VL - 32
IS - 4
SP - 377
EP - 389
LA - eng
UR - http://eudml.org/doc/76084
ER -

References

top
  1. [1] An exhaustive list of references is by now impossible. See for instance 
  2. R.N. Hill, J. Math. Phys., t. 8, 1967, p. 201. 
  3. J.G. Wray, Phys. Rev., t. D 1, n° 8, 1970, p. 2212. 
  4. L. Bel, Ann. Inst. Henri Poincaré, t. 12, 1970, p. 307. MR266567
  5. R. Arens, Arch. for Rat. Mech. and Analysis, t. 47, 1972, p. 255. Zbl0244.70006MR347305
  6. C. Fronsdal, Phys. Rev., t. D 4, 1971, p. 1689. 
  7. I.T. Todorov, Phys. Rev., t. D 3, 1971, p. 2351. 
  8. H. Leutwyler and J. Stern, Nucl. Phys., t. B 133, 1978, p. 115. 
  9. T. Takabayashi, Prog. Theor. Phys., t. 54, n° 2, 1975, p. 563. 
  10. D. Dominici, J. Gomis, G. Longhi, Nuovo Cimento, t. 48 A, 1978, p. 257; Nuovo Cimento, t. 48 B, 1978, p. 152. 
  11. And also references [2-4] and [8]. 
  12. Quoted below. 
  13. [2] Ph. Droz-Vincent, Lett. Nuovo Cim., t. 1, 1969, p. 839; Physica Scripta, t. 2, 1970, p. 129. Zbl1063.83553
  14. [3] Ph. Droz-Vincent, Reports on Math. Phys., t. 8, n° 1, 1975, p. 79. MR418156
  15. [4] Ph. Droz-Vincent, Ann. Inst. Henri Poincaré, t. 27, 1977, p. 407. MR496313
  16. [5] G. Preparata and K. Szego, Phys. Letters, t. 68 B, 1977, p. 239. 
  17. T. Takabayachi, Progr. Theor. Phys., t. 57, 1977, p. 331; t. 58, 1977, p. 1229; D. P. N. U. Report 15-78, 1978. 
  18. H.W. Crater, Phys. Rev., t. D 18, n° 8, 1978. 
  19. [6] L. Bel and X. Fustero, Ann. Inst. Henri Poincaré, t. 24, 1976, p. 411. See also 
  20. L. Bel, Phys. Rev., t. D 18, n° 12, 1979, p. 4770. In their case, classical field theory automatically provides N-body difference-differential equations, as usual. Then they reduce these equations to a predictive differential system by a series expansion method. In our case one wishes to ignore field theory from the outset. 
  21. [7] The spirit of our formulation is similar to that of P.A.M. Dirac, Commun. Dublin Inst. Adv. Studies, A, n° 2, 1943. But of course we take into account the facts implied by Currie's No-Go Theorem. 
  22. [8] D.G. Currie, J. Math. Phys., t. 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. Zbl0125.19505MR158737
  23. D.G. Currie, T.F. Jordan and E.C.C. Sudarshan, Rev. Mod. Phys., t. 35, 1963, p. 350. MR151138
  24. H. Leutwyler, Nuovo Cim., t. 37, 1965, p. 556. 
  25. [9] Ph. Droz-Vincent, C. R. Acad. Sc. Paris, t. A 182, 1979. 
  26. [10] Trivial for a single particle. For N = 2 see ref. [4] and DROZ-VINCENT, in Volume in the honor of A. Lichnerowicz, Cahen and Flato, Ed. D. Reidel, Dordrecht. The argument holds for any N. It is based upon the « individuality » property expressed in eq. (1.4). 
  27. [11] Ph. Droz-Vincent, Lett. Nuovo Cim., t. 23, n° 5, 1978, p. 184. MR522824
  28. [12] Ph. Droz-Vincent, Phys. Rev., t. D 19, n° 2, 1979, p. 702. MR518731
  29. [13] Note that the sign of the potential depends on the space time signature. 
  30. [14] For N = 2, see for example: 
  31. R.P. Feynman, M. Kislincer and R. Ravndal, Plays. Rev., t. D 3, 1971, p. 2706. 
  32. Y.S. Kim and M.L. Noz, Phys. Rev., t. D 15, 1977, p. 335. 
  33. J.F. Gunion and L.F. Li, Phys. Rev., t. D 12, 1975, p. 3583. 
  34. H.W. Crater, Phys. Rev., t. D 16, 1977, p. 1580. For N = 3, see ref. [5]. 
  35. [15] Note that abandoning the single-potential assumption will only introduce interaction terms in the « subsidiary » equations (4.6). 

NotesEmbed ?

top

You must be logged in to post comments.