Geometrical background for the unified field theories : the Einstein-Cartan theory over a principal fibre bundle
Annales de l'I.H.P. Physique théorique (1981)
- Volume: 34, Issue: 4, page 437-463
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKerner, Richard. "Geometrical background for the unified field theories : the Einstein-Cartan theory over a principal fibre bundle." Annales de l'I.H.P. Physique théorique 34.4 (1981): 437-463. <http://eudml.org/doc/76126>.
@article{Kerner1981,
author = {Kerner, Richard},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Einstein-Cartan theory over a principal fibre bundle; mass spectrum; gauge theory; spinors},
language = {eng},
number = {4},
pages = {437-463},
publisher = {Gauthier-Villars},
title = {Geometrical background for the unified field theories : the Einstein-Cartan theory over a principal fibre bundle},
url = {http://eudml.org/doc/76126},
volume = {34},
year = {1981},
}
TY - JOUR
AU - Kerner, Richard
TI - Geometrical background for the unified field theories : the Einstein-Cartan theory over a principal fibre bundle
JO - Annales de l'I.H.P. Physique théorique
PY - 1981
PB - Gauthier-Villars
VL - 34
IS - 4
SP - 437
EP - 463
LA - eng
KW - Einstein-Cartan theory over a principal fibre bundle; mass spectrum; gauge theory; spinors
UR - http://eudml.org/doc/76126
ER -
References
top- [1] R. Kerner, in Group Theoretical Methods in Physics, Springer Lecture Notes in Physics, n° 50, ed. A. Janner, T. Janssen, M. Boon, Springer-Verlag, Berlin, 1950. MR472290
- [2] C. Domokos, S. Kövesi-Domokos, Phys. Rev. D, t. 16, n° 10, 1977, p. 3060-3067.
- [3] R. Kerner, in Differential Geometrical Methods in Mathematical Physics, ed. P. Garcia and Perez-Rendon, Springer-Verlag, Lecture Notes in Mathematics, to appear in 1981. MR607682
- [4] Y. Kosmann, Dérivées de Lie des Spineurs, Thèse, Annali di Matematica Pura ed Applicata, Bologna, t. XCI, 1972, p. 317-395. Zbl0231.53065MR312413
- [5] A. Lichnerowicz, Bull. Soc. Math. France, t. 92, 1964, p. 11-100. Zbl0138.44301MR169667
- [6] A. Lichnerowicz, C. R. Acad. Sci., Paris, t. 257, 1963, p. 7-9. Zbl0136.18401MR156292
- [7] A. Lichnerowicz, Ann. Scient. Ec. Norm. Sup.3e série, t. 81, 1964, p. 341-385. Zbl0138.42801MR187174
- [8] A. Trautman, Rep. Math. Phys., t. 1, 1970, p. 29. Zbl0204.29802MR281472
- [9] Y.M. Cho, J. Math. Phys., t. 16, 1975, p. 2029. MR384043
- [10] F.W. Hehl, G. Kerlick, P. Von Der Heyde, Z. Naturf., t. 31 a, 1976, p. 111, 524, 823.
- [11] W. Kopczynski, in Differential Geometrical Methods in Mathematical Physics, ed. by Garcia and Perez-Rendon, Springer, Lecture Notes in Mathematics, to appear in 1981. MR607682
- [13] R. Kerner, J. Math. Phys., t. 21, 1980. Zbl0446.53049MR586336
- [14] Y. Choquet-Bruhat, C. De Witt-Morette, M. Dillard-Bleick, Analysis. Manifolds and Physics, North-Holland, 1981. Zbl0385.58001
- [15] A. Trautman, Symp. Math., t. 12, 1973, p. 139. Zbl0273.53021
- [16] M. Novello, Phys. Lett., t. 59 A, 1976, p. 105. MR418837
- [17] V. De Sabbata, M. Gasperini, Phys. Lett., t. 77 A, 1980, p. 300.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.