Matrix elements and highest weight Wigner coefficients of G L ( n , )

W. H. Klink; T. Ton-That

Annales de l'I.H.P. Physique théorique (1982)

  • Volume: 36, Issue: 3, page 225-237
  • ISSN: 0246-0211

How to cite

top

Klink, W. H., and Ton-That, T.. "Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$." Annales de l'I.H.P. Physique théorique 36.3 (1982): 225-237. <http://eudml.org/doc/76157>.

@article{Klink1982,
author = {Klink, W. H., Ton-That, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {linear group; irreducible representation; tensor product; matrix coefficients; highest weight Wigner coefficients; fundamental representations},
language = {eng},
number = {3},
pages = {225-237},
publisher = {Gauthier-Villars},
title = {Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb \{C\})$},
url = {http://eudml.org/doc/76157},
volume = {36},
year = {1982},
}

TY - JOUR
AU - Klink, W. H.
AU - Ton-That, T.
TI - Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 36
IS - 3
SP - 225
EP - 237
LA - eng
KW - linear group; irreducible representation; tensor product; matrix coefficients; highest weight Wigner coefficients; fundamental representations
UR - http://eudml.org/doc/76157
ER -

References

top
  1. [1] I.M. Gelfand and M.I. Graev, Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. Zbl0185.21701MR201568
  2. [2] A.U. Klimyk, Lett. Math. Phys., t. 3, 1979, p. 315. Zbl0418.22018MR545409
  3. [3] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979. p. 77-79. Zbl0439.22020
  4. [4] W.H. Klink and T. Ton-That, C. R. Acad. Sci., Ser. B, t. 289, 1979, p. 115-118. 
  5. [5] L.C. Biedenharn and J.D. Louck, Comm. Math. Phys., t. 8, 1968, p. 89; M.K.F. Wong, J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. MR235799
  6. [6] Hou Pei-Yu, Scientia Sinica, t. 15, n° 6, 1966, p. 763-772. Zbl0149.27403MR209397
  7. [7] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979, p. 99-113. Zbl0439.22021MR561917

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.