Matrix elements and highest weight Wigner coefficients of
Annales de l'I.H.P. Physique théorique (1982)
- Volume: 36, Issue: 3, page 225-237
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKlink, W. H., and Ton-That, T.. "Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$." Annales de l'I.H.P. Physique théorique 36.3 (1982): 225-237. <http://eudml.org/doc/76157>.
@article{Klink1982,
author = {Klink, W. H., Ton-That, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {linear group; irreducible representation; tensor product; matrix coefficients; highest weight Wigner coefficients; fundamental representations},
language = {eng},
number = {3},
pages = {225-237},
publisher = {Gauthier-Villars},
title = {Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb \{C\})$},
url = {http://eudml.org/doc/76157},
volume = {36},
year = {1982},
}
TY - JOUR
AU - Klink, W. H.
AU - Ton-That, T.
TI - Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 36
IS - 3
SP - 225
EP - 237
LA - eng
KW - linear group; irreducible representation; tensor product; matrix coefficients; highest weight Wigner coefficients; fundamental representations
UR - http://eudml.org/doc/76157
ER -
References
top- [1] I.M. Gelfand and M.I. Graev, Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. Zbl0185.21701MR201568
- [2] A.U. Klimyk, Lett. Math. Phys., t. 3, 1979, p. 315. Zbl0418.22018MR545409
- [3] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979. p. 77-79. Zbl0439.22020
- [4] W.H. Klink and T. Ton-That, C. R. Acad. Sci., Ser. B, t. 289, 1979, p. 115-118.
- [5] L.C. Biedenharn and J.D. Louck, Comm. Math. Phys., t. 8, 1968, p. 89; M.K.F. Wong, J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. MR235799
- [6] Hou Pei-Yu, Scientia Sinica, t. 15, n° 6, 1966, p. 763-772. Zbl0149.27403MR209397
- [7] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979, p. 99-113. Zbl0439.22021MR561917
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.