An alternate constructive approach to the ϕ 3 4 quantum field theory, and a possible destructive approach to ϕ 4 4

Alan D. Sokal

Annales de l'I.H.P. Physique théorique (1982)

  • Volume: 37, Issue: 4, page 317-398
  • ISSN: 0246-0211

How to cite

top

Sokal, Alan D.. "An alternate constructive approach to the $\varphi ^4_3$ quantum field theory, and a possible destructive approach to $\varphi ^4_4$." Annales de l'I.H.P. Physique théorique 37.4 (1982): 317-398. <http://eudml.org/doc/76177>.

@article{Sokal1982,
author = {Sokal, Alan D.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {317-398},
publisher = {Gauthier-Villars},
title = {An alternate constructive approach to the $\varphi ^4_3$ quantum field theory, and a possible destructive approach to $\varphi ^4_4$},
url = {http://eudml.org/doc/76177},
volume = {37},
year = {1982},
}

TY - JOUR
AU - Sokal, Alan D.
TI - An alternate constructive approach to the $\varphi ^4_3$ quantum field theory, and a possible destructive approach to $\varphi ^4_4$
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 37
IS - 4
SP - 317
EP - 398
LA - eng
UR - http://eudml.org/doc/76177
ER -

References

top
  1. [1] J. Glimm and A. Jaffe, Positivity of the φ43 Hamiltonian. Fortsch. Physik, t. 21, 1973, p. 327-376. MR408581
  2. [2] J. Feldman, The λφ43 theory in a finite volume. Commun. Math. Phys., t. 37, 1974, p. 93-120. MR384003
  3. [3] J.S. Feldman and K. Osterwalder, The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys., t. 97, 1976, p. 80-135. MR416337
  4. [4] J. Magnen and R. Sénéor, The infinite volume limit of the φ43 model. Ann. Inst. Henri Poincaré, t. A 24, 1976, p. 95-159. MR406217
  5. [5] J. Magnen and R. Sénéor, Phase space cell expansion and Borel summability for the Euclidean φ43 theory. Commun. Math. Phys., t. 56, 1977, p. 237-276. MR523030
  6. [5'] G. Gallavotti, Some aspects of the renormalization problems in statistical mechanics and field theory. Mem. Accad. Lincei, t. 15, 1978, p. 23-59. MR530273
  7. [5''] G. Gallavotti, On the ultraviolet stability in statistical mechanics and field theory. Ann. Mat. Pura Appl., t. 120, 1979, p. 1-23. Zbl0418.60098MR551060
  8. [5'''] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti and E. Scacciatelli, Some probabilistic techniques in field theory. Commun. Math. Phys., t. 59, 1978, p. 143-166. Zbl0381.60096MR491611
  9. [5''''] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti and E. Scacciatelli, Ultraviolet stability in Euclidean scalar field theories. Commun. Math. Phys., t. 71, 1980, p. 95-130. Zbl0427.60098MR560344
  10. [6] B. Simon, The P(φ)2 Euclidean (quantum) field theory. Princeton, N. J., Princeton University Press, 1974. MR489552
  11. [7] J. Rosen, Mass renormalization for the λφ4 Euclidean lattice field theory. Adv. Appl. Math., t. 1, 1980, p. 37-49. Zbl0453.60097MR603124
  12. [8] J. Glimm and A. Jaffe, Remark on the existence of φ44. Phys. Rev. Lett., t. 33, 1974, p. 440-442. Zbl1329.81210MR400969
  13. [9] G.A. BakerJr., , Self-interacting, boson, quantum field theory and the thermodynamic limit in d dimensions. J. Math. Phys., t. 16, 1975, p. 1324-1346. MR395612
  14. [10] F. Guerra, L. Rosen and B. Simon. The P(φ)2 Euclidean quantum field theory as classical statistical mechanics. Ann. Math., t. 101, 1975, p. 111-259. MR378670
  15. [11] Y.M. Park, Convergence of lattice approximations and infinite volume limit in the (λφ4-σφ2-μφ)3 field theory. J. Math. Phys., t. 18, p. 354-366, 1977. MR432062
  16. [12] R. Schrader, A possible constructive approach to φ44. I. Commun. Math. Phys., t. 49, 1976, p. 131-153, II. Ann. Inst. Henri Poincaré, t. A 26, 1977, p. 295-301, III. Commun. Math. Phys., t. 50, 1976, p. 97-102. 
  17. [13] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's functions. I. Commun. Math. Phys., t. 31, 1973, p. 83-112. II. Commun. Math. Phys., t. 42, 1975, p. 281-305. Zbl0274.46047
  18. [14] J. Glimm and A. Jaffe, Functional integral methods in quantum field theory. In: New developments in quantum field theory and statistical mechanics (1976Cargèse lectures). M. Lévy and P. Mitter, eds., New York and London, Plenum Press, 1977. MR673947
  19. [15] C.M. Newman, Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys., t. 41, 1975, p. 1-9. MR376061
  20. [16] L.D. Landau, Collected papers of L. D. Landau (D. ter Haar, ed.), New York-London-Paris : Gordon and Breach, 1965. MR237287
  21. [17] L. Landau, On the quantum theory of fields. In: Niels Bohr and the development of physics (W. Pauli, ed.), London, Pergamon Press, 1955. Reprinted in [16]. MR75092
  22. [18] L. Landau and I. Pomeranchuk, On point interactions in quantum electrodynamics. Dokl. Akad. Nauk S. S. S. R., t. 102, 1955, p. 489-492. English translation in [16]. Zbl0067.21602MR73476
  23. [19] I. Pomerančuk, Vanishing of the renormalized charge in electrodynamics and in meson theory. Nuovo Cim., t. 3, 1956, p. 1186-1203. Zbl0071.23101MR82373
  24. [20] I. Ya. Pomeranchuk, V.V. Sudakov and K.A. Ter-Martirosyan, Vanishing of renormalized charges in field theories with point interaction. Phys. Rev., t. 103, 1956, p. 784-802. MR82374
  25. [21] A.D. Galanin, On the possibility of formulating a meson theory with several fields. Zh. Eksp. Teor. Fiz., t. 32, 1957, p. 552-558 [Soviet Phys., J. E. T. P., t. 5, 1957, p. 460-464]. MR91813
  26. [22] I.T. Diatlov, V.V. Sudakov and K.A. Ter-Martirosyan, Asymptotic mesonmeson scattering theory. Zh. Eksp. Teor. Fiz., t. 32, 1957, p. 767-780 [Soviet Phys., J. E. T. P., t. 5, 1957, p. 631-642]. Zbl0138.45802
  27. [23] A.A. Abrikosov, A.D. Galanin, L.P. Gorkov, L.D. Landau, I. Ya. Pomeranchuk and K.A. Ter-Martirosyan, Possibility of formulation of a theory of strongly interacting fermions. Phys. Rev., t. 111, 1958, p. 321-328. Reprinted in [16]. Zbl0082.44204MR135109
  28. [24] E.S. Fradkin, The asymptote of Green's function in quantum electrodynamics. Zh. Eksp. Teor. Fiz., t. 28, 1955, p. 750-752 [Soviet Phys., J. E. T. P., t. 1, 1955, p. 604-606]. Zbl0067.21505
  29. [25] E.S. Fradkin, The problem of the asymptote of the Green function in the theory of mesons with pseudoscalar coupling. Zh. Eksp. Teor. Fiz., t. 29, 1955, p. 377-379 [Soviet Phys., J. E. T. P., t. 2, 1956, p. 340-342]. Zbl0071.42901
  30. [26] D.A. Kirzhnits, Contribution to field theory involving a cut-off factor. Zh. Eksp. Teor. Fiz., t. 32, 1957, p. 534-541 [Soviet Phys., J. E. T. P., t. 5, 1957, p. 445-451]. MR92602
  31. [27] S. Kamefuchi, A comment on Landau's method of integration in quantum electrodynamics. Mat. Fys. Medd. Dan. Vid. Selsk., t. 31, 1957, no. 6. Zbl0079.42704MR91787
  32. [28] A.A. Ansel'm, Asymptotic theory of a one-dimensional four-fermion interaction. Zh. Eksp. Teor. Fiz., t. 35, 1958, p. 1522-1531 [Soviet Phys., J. E. T. P., t. 8, 1959, p. 1065-1071]. 
  33. [29] N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quantized fields. New York, Interscience, 1959, Chapter VIII, especially p. 528-529. Zbl0088.21701MR110471
  34. [30] J. Glimm and A. Jaffe, Particles and scaling for lattice fields and Ising models. Commun. Math. Phys., t. 51, 1976, p. 1-13. MR432054
  35. [31] J. Bricmont, J.-R. Fontaine, J.L. Lebowitz and T. Spencer, Lattice systems with a continuous symmetry. II. Decay of correlations. Commun. Math. Phys., t. 78, 1981, p. 363-371. MR603499
  36. [31'] J. Bricmont, J.-R. Fontaine, J.L. Lebowitz, E.H. Lieb and T. Spencer, Lattice systems with a continuous symmetry. III. Low temperature asymptotic expansion for the plane rotator model. Commun. Math. Phys., t. 78, 1981, p. 545-566. MR606463
  37. [32] M.E. Fisher, Rigorous inequalities for critical-point correlation exponents. Phys. Rev., t. 180, 1969, p. 594-600. 
  38. [33] B. Simon, Functional integration and quantum physics. New York–San Francisco- London, Academic Press, 1979. Zbl0434.28013MR544188
  39. [34] E. Brézin, J.C. Leguillou and J. Zinn-Justin, Field theoretical approach to critical phenomena. In: Phase transitions and critical phenomena, t. 6. C. Domb and M. S. Green, eds., London-New York–San Francisco, Academic Press, 1976. MR495798
  40. [35] K. Symanzik, Regularized quantum field theory. In: New developments in quantum field theory and statistical mechanics (1976Cargèse Lectures). M. Lévy and P. Mitter, eds. New York and London, Plenum Press, 1977. MR522160
  41. [36] K.G. Wilson, Quantum field-theory models in less than 4 dimensions. Phys. Rev., t. D 7, 1973, p. 2911-2926. MR386545
  42. [37] R.B. Griffiths, Phase transitions. In: Statistical mechanics and quantum field theory (1970Les Houches lectures). C. DeWitt and R. Stora, eds. New York-London- Paris, Gordon and Breach, 1971. 
  43. [38] G.S. Sylvester, Continuous-spin Ising ferromagnets. M. I. T. dissertation (mathematics), 1976. 
  44. [39] R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity. Teor. Veroya. Prim., t. 13, 1968, p. 201- 229 [Theor. Prob. Appl., t. 13, 1968, p. 197-224]. Zbl0184.40403MR231434
  45. [40] R.L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interactions. Funkts. Anal. Prilozh., t. 2, no. 4, 1968, p. 31-43 [Funct. Anal. Appl., t. 2, 1968, p. 292-301]. MR250630
  46. [41] O.E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys., t. 13, 1969, p. 194-215. MR256687
  47. [42] C. Preston, Random fields.Lecture notes in mathematics # 534, Berlin-Heidelberg- New York, Springer-Verlag, 1976. Zbl0335.60074MR448630
  48. [43] M. Cassandro, E. Olivieri, A. Pellegrinotti and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 41, 1978, p. 313-334. Zbl0369.60116MR471115
  49. [44] J.L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spins. Commun. Math. Phys., t. 50, 1976, p. 195-218 ; t. 78 (E), 1980, p. 151. MR446251
  50. [45] G.S. Sylvester, Inequalities for continuous-spin Ising ferromagnets. J. Stat. Phys., t. 15, 1976, p. 327-341. MR436856
  51. [46] C.M. Newman, Gaussian correlation inequalities for ferromagnets. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 33, 1975, p. 75-93. Zbl0297.60053MR398401
  52. [47] G.S. Sylvester, Representations and inequalities for Ising model Ursell functions. Commun. Math. Phys., t. 42, 1975, p. 209-220. MR406301
  53. [48] J. Bricmont, The Gaussian inequality for multicomponent rotators. J. Stat. Phys., t. 17, 1977, p. 289-300. MR462408
  54. [49] G.A. Battle and L. Rosen, The FKG inequality for the Yukawa2 quantum field theory. J. Stat. Phys., t. 22, 1980, p. 123-192. MR560554
  55. [50] C.M. Newman, Moment inequalities for ferromagnetic Gibbs distributions. J. Math. Phys., t. 16, 1975, p. 1956-1959. MR391853
  56. [51] R. Schrader, New correlation inequalities for the Ising model and P(φ) theories. Phys. Rev., t. B 15, 1977, p. 2798-2803. MR449416
  57. [52] A. Messager and S. Miracle-Sole, Correlation functions and boundary conditions in the Ising ferromagnet. J. Stat. Phys., t. 17, 1977, p. 245-262. MR676312
  58. [53] G.C. Hegerfeldt, Correlation inequalities for Ising ferromagnets with symmetries. Commun. Math. Phys., t. 57, 1977, p. 259-266. MR503339
  59. [54] D. Szàsz, Correlation inequalities for non-purely-ferromagnetic systems. J. Stat. Phys., t. 19, 1978, p. 453-459. MR515466
  60. [55] J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys., t. 62, 1978, p. 1-34. MR506363
  61. [56] R.S. Schor, The particle structure of v-dimensional Ising models at low temperatures. Commun. Math. Phys., t. 59, 1978, p. 213-233. MR484194
  62. [57] A.D. Sokal, Representations and inequalities for the 2-point function in classical lattice systems. Unpublished manuscript, 1980. 
  63. [58] J. Fröhlich, B. Simon and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys., t. 50, 1976, p. 79-85. MR421531
  64. [59] B. Simon, New rigorous existence theorems for phase transitions in model systems. In: Statistical Physics, « Statphys 13 » (1977I. U. P. A. P. conference, Haifa), part 1, D. Cabib et al., eds. Annals of the Israel Physical Society, t. 2, 1978. MR513012
  65. [60] B. Simon, Correlation inequalities and the mass gap in P(φ)2. I. Domination by the two point function. Commun. Math. Phys., t. 31, 1973, p. 127-136. MR329495
  66. [61] A.D. Sokal, More inequalities for critical exponents. J. Stat. Phys., t. 25, 1981, p. 25-50. MR610690
  67. [62] B. Simon, Decay of correlations in ferromagnets. Phys. Rev. Lett., t. 44, 1980, p. 547- 549. MR557644
  68. [63] B. Simon, Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys., t. 77, 1980, p. 111-126. MR589426
  69. [64] J. Glimm and A. Jaffe, Three-particle structure of φ4 interactions and the scaling limit. Phys. Rev., t. D 11, 1975, p. 2816-2827. MR452301
  70. [65] P.J. Paes-Leme, Ornstein-Zernike and analyticity properties for classical lattice spin systems. Ann. Phys., t. 115, 1978, p. 367-387. Zbl0397.42011MR513891
  71. [66] O.A. Mcbryan and J. Rosen, Existence of the critical point in φ4 field theory. Commun. Math. Phys., t. 51, 1976, p. 97-105. MR421428
  72. [67] E.H. Lieb, A refinement of Simon's correlation inequality. Commun. Math. Phys., t. 77, 1980, p. 127-135. MR589427
  73. [68] J. Glimm and A. Jaffe, Critical exponents and elementary partices. Commun. Math. Phys., t. 52, 1977, p. 203-209. MR443684
  74. [69] A.D. Sokal, Unpublished, 1980. 
  75. [70] J.L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium state for Ising spin systems. Commun. Math. Phys., t. 25, 1972, p. 276-282. MR312854
  76. [71] G.A. Baker Jr., B.G. Nickel, M.S. Green and D.I. Meiron, Ising-model critical indices in three dimensions from the Callan-Symanzik equation. Phys. Rev. Lett., t. 36, 1976, p. 1351-1354. 
  77. [72] J. Glimm and A. Jaffe, Absolute bounds on vertices and couplings. Ann. Inst. Henri Poincaré, t. A 22, 1975, p. 97-107. MR384012
  78. [73] R. Schrader, New rigorous inequality for critical exponents in the Ising model. Phys. Rev., t. B 14, 1976, p. 172-173. MR443769
  79. [74] A.D. Sokal, Improved rigorous upper bound for the renormalized 4-point coupling. In preparation. 
  80. [75] D.G. Boulware and L.S. Brown, Tree graphs and classical fields. Phys. Rev., t. 172, 1968, p. 1628-1631. 
  81. [76] R.W. Johnson, Finite integral equations for Green's functions for :φ4: coupling. J. Math. Phys., t. 11, 1970, p. 2161-2165. 
  82. [77] M. Suzuki, Generalized exact formula for the correlations of the Ising model and other classical systems. Phys. Lett., t. 19, 1965, p. 267-268. Zbl0129.23602MR187824
  83. [78] F. Schwabl, Generating functional and Green's function hierarchy of the Ising model. Ann. Phys., t. 54, 1969, p. 1-16. MR250600
  84. [79] H. Lehmann, K. Symanzik and W. Zimmermann, Zur Vertexfunktion in quantisierten Feldtheorien. Nuovo Cim., t. 2, 1955, p. 425-432. Zbl0066.22604MR76638
  85. [80] G. Barton, Introduction to advanced field theory. New York, Interscience, 1963, Chapters 10-12. Zbl0116.44903MR159583
  86. [81] K.W. Ford, Problem of ghost states in field theories. Phys. Rev., t. 105, 1957, p. 320- 327. Zbl0077.42502MR82893
  87. [82] E. Ferrari and G. Jona-Lasinio, Remarks on the appearance of ghost states in relativistic field theories. Nuovo Cim., t. 16, 1960, p. 867-885. Zbl0090.44705
  88. [83] K. Symanzik, On the many-particle structure of Green's functions in quantum field theory. J. Math. Phys., t. 1, 1960, p. 249-273, Section 5 and Appendix B. MR145878
  89. [84] L.E. Evans, High energy theorem in quantum electrodynamics. Nucl. Phys., t. 17, 1960, p. 163-168. MR121148
  90. [85] J. Glimm and A. Jaffe, Critical exponents and renormalization in the φ4 scaling limit. In: Quantum dynamics, models and mathematics (1975Bielefeld symposium), L. Streit, ed. Wien-New York, Springer-Verlag, 1976. Acta Physica Austriaca Suppl., t. XVI, 1976, p. 147-166. MR673762
  91. [86] D. Marchesin, The scaling limit of the φ2 field in the anharmonic oscillator: existence and numerical studies. NYU preprint, 1978. MR531285
  92. [87] A.D. Sokal, A rigorous inequality for the specific heat of an Ising or φ4 ferromagnet. Phys. Lett., t. 71 A, 1979, p. 451-453. MR588470
  93. [88] A.S. Wightman, Should we believe in quantum field theory? In: The whys of subnuclear physics (1977Erice lectures). A. Zichichi, ed. New York, Plenum Press, 1979. 
  94. [89] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that. New York- Amsterdam, Benjamin, 1964. Second edition, 1978. Zbl0135.44305MR468904
  95. [90] G. Källén, Review of consistency problems in quantum electrodynamics. In: Quantum electrodynamics. P. Urban, ed., Wien-New York, Springer-Verlag, 1965. Acta Physica Austriaca Suppl., t. II, 1965, p. 133-161. 
  96. [91] K.G. Wilson, Renormalization group and strong interactions. Phys. Rev., t. D 3, 1971, p. 1818-1846. MR332009
  97. [92] S. Coleman, Dilatations. In: Properties of the fundamental interactions (1971Erice lectures), A. Zichichi, ed., Bologna, Editrice Compositori, 1973. 
  98. [93] D.J. Gross, Applications of the renormalization group to high-energy physics. In: Methods in field theory (1975Les Houches lectures), R. Balian and J. Zinn–Justin, eds., Amsterdam-New York, North-Holland, 1976. 
  99. [94] K.G. Wilson and J. Kogut, The renormalization group and the ∈ expansion. Phys. Rep., t. 12, 1974, p. 75-200. 
  100. [94'] R.D. Pisarski, Fixed-point structure of (φ6)3 at large N. Phys. Rev. Lett., t. 48, 1982, p. 574-576. MR646742
  101. [95] S.L. Adler, Short-distance behavior of quantum electrodynamics and an eigenvalue condition for α. Phys. Rev., t. D 5, 1972, p. 3021-3047; t. D 7, 1973, (E), p. 1948. 
  102. [96] K. Johnson and M. Baker, Some speculations on high-energy quantum electrodynamics. Phys. Rev., t. D 8, 1973, p. 1110-1122. 
  103. [97] B.M. Mccoy and T.T. Wu, Non-perturbative quantum field theory. Scientia Sinica, t. 22, 1979, p. 1021-1032. MR551136
  104. [98] N.N. Khuri, Zeros of the Gell—Mann—Low function and Borel summations in renormalizable theories. Phys. Lett., t. 82 B, 1979, p. 83-88. 
  105. [99] C. Domb and M.S. Green, Phase transitions and critical phenomena. Vol. 3, Series expansions for lattice models. London-New York, Academic Press, 1974. MR353911
  106. [100] H. Kunz, Analyticity and clustering properties of unbounded spin systems. Commun. Math. Phys., t. 59, 1978, p. 53-69. MR479235
  107. [101] G.S. Sylvester, Weakly coupled Gibbs measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 50, 1979, p. 97-118. Zbl0402.60099MR550125
  108. [102] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(φ)2 model and other applications of high temperature expansions. Part II: The cluster expansion. In: Constructive quantum field theory (1973Erice lectures), G. Velo and A. Wightman, eds., Berlin-Heidelberg-New York, Springer-Verlag, 1973. MR395513
  109. [103] G.A. BakerJr., , Essentials of Padé approximants.New York, Academic Press, 1975. Zbl0315.41014
  110. [104] J.D. Bessis, J.M. Drouffe and P. Moussa, Positivity contraints for the Ising ferromagnetic model. J. Phys., t. A 9, 1976, p. 2105-2124. 
  111. [105] G.A. BakerJr., and J.M. Kincaid, Continuous-spin Ising model and λ: φ4:d field theory. Phys. Rev. Lett., t. 42, 1979, p. 1431-1434; t. 44 (E), 1980, p. 434. 
  112. [106] G.A. BakerJr., and J.M. Kincaid, The continuous-spin Ising model, g0 : ø4 :d field theory, and the renormalization group. J. Stat. Phys., t. 24, 1981, p. 469-528. MR607611
  113. [107] G.A. BakerJr., , Analysis of hyperscaling in the Ising model by the high-temperature series method. Phys. Rev., t. B 15, 1977, p. 1552-1559. Zbl0419.68062
  114. [108] D.S. Gaunt and M.F. Sykes, The critical exponent γ for the three-dimensional Ising model. J. Phys., t. A 12, 1979, L 25-L 28. 
  115. [109] S. Mckenzie, M.F. Sykes and D.S. Gaunt, The critical isotherm of the four–dimensional Ising model. J. Phys., t. A 12, 1979, p. 743-746. 
  116. [110] D.S. Gaunt, M.F. Sykes and S. Mckenzie, Susceptibility and fourth-field derivative of the spin-1/2 Ising model for T &gt; Tc and d = 4. J. Phys., t. A 12, 1979, p. 871-877. 
  117. [111] S. Mckenzie, The exponent γ for the spin-1/2 Ising model on the face-centered cubic lattice. J. Phys., t. A 12, 1979, L 185-L 188. 
  118. [112] J. Oitmaa and J. Ho-Ting-Hun, The critical exponent y for the three-dimensional Ising model. J. Phys., t. A 12, 1979, L 281-L 282. 
  119. [113] B.G. Nickel and B. Sharpe, On hyperscaling in the Ising model in three dimensions. J. Phys., t. A 12, 1979, p. 1819-1834. 
  120. [114] J.J. Rehr, Confluent singularities and hyperscaling in the spin-1/2 Ising model. J. Phys., t. A 12, 1979, L 179-L 183. 
  121. [115] J. Zinn-Justin, Analysis of Ising model critical exponents from high temperature series expansion. J. de Physique, t. 40, 1979, p. 969-975. 
  122. [116] S. Mckenzie and D.S. Gaunt, A test of hyperscaling for the spin-1/2 Ising model in four dimensions. J. Phys., t. A 13, 1980, p. 1015-1021. 
  123. [117] D. Bessis, P. Moussa and G. Turchetti, Subdominant critical indices for the ferromagnetic susceptibility of the spin-1/2 Ising model. J. Phys., t. A 13, 1980, p. 2763-2773. 
  124. [118] B. Nickel, Hyperscaling and universality in 3 dimensions. Physica, t. 106 A, 1981, p. 48-58. 
  125. [119] B.G. Nickel, The problem of confluent singularities. In: Phase Transitions (1980Cargèse lectures), M. Lévy, J.-C. LeGuillou and J. Zinn-Justin, eds., New York and London, Plenum Press, 1982. 
  126. [120] R. Roskies, Hyperscaling in the Ising model on the simple cubic lattice. Phys. Rev., t. B 23, 1981, p. 6037-6042. 
  127. [120'] J. Zinn-Justin, Analysis of high temperature series of the spin S Ising model on the body-centred cubic lattice. J. de Physique, t. 42, 1981, p. 783-792. 
  128. [120''] R.Z. Zoskies, Reconciliation of high temperature series and renormalization group results by suppressing confluent singularities. Phys. Rev., t. B 24, 1981, p. 5305-5317. MR643598
  129. [121] M.E. Fisher, General scaling theory for critical points. In: Collective properties of physical systems (24th Nobel symposium). B. Lundqvist and S. Lundqvist, eds., Uppsala, Almqvist & Wiksell, 1974. 
  130. [122] D. Isaacson, The critical behavior of ø41. Commun. Math. Phys., t. 53, 1977, p. 257- 275. Zbl0348.34016MR438956
  131. [123] B.M. Mccoy, C.A. Tracy and T.T. Wu, Two-dimensional Ising model as an exactly soluble relativistic quantum field theory: explicit formulas for n-point functions. Phys. Rev. Lett., t. 38, 1977, p. 793-796. 
  132. [124] M.E. Fisher, The theory of equilibrium critical phenomena. Reports Prog. Phys., t. 30, 1967, p. 615-730. 
  133. [125] W.J. Camp, D.M. Saul, J.P. Vandyke and M. Wortis, Series analysis of corrections to scaling for the spin-pair correlations of the spin-s Ising model: confluent singularities, universality and hyperscaling. Phys. Rev., t. B 14, 1976, p. 3990-4001. 
  134. [126] T. Spencer, Private communication. 
  135. [127] C. Friedman, Perturbations of the Schrödinger equation by potentials with small support. J. Funct. Anal., t. 10, 1972, p. 346-360. Zbl0235.35009MR340779
  136. [128] K. Symanzik, Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys., t. 7, 1966, p. 510-525. MR187686
  137. [129] K. Symanzik, Euclidean quantum field theory. In: Local quantum theory (1968Varenna lectures), R. Jost, ed., New York-London, Academic Press, 1969. 
  138. [130] D. Brydges and P. Federbush, A lower bound for the mass of a random Gaussian lattice. Commun. Math. Phys., t. 62, 1978, p. 79-82. Zbl0381.60059MR496278
  139. [131] A.J. Kupiainen, On the 1/n expansion. Commun. Math. Phys., t. 73, 1980, p. 273-294. MR574175
  140. [131'] R.L. Wolpert, Wiener path intersections and local time. J. Funct. Anal., t. 30, 1978, p. 329-340. Zbl0403.60069MR518339
  141. [131''] R.L. Wolpert, Local time and a particle picture for Euclidean field theory. J. Funct. Anal., t. 30, 1978, p. 341-357. Zbl0464.70016MR518340
  142. [132] A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in n-space. Acta Sci. Math. (Szeged), t. 12 B, 1950, p. 75-81. Zbl0036.09001MR34972
  143. [133] M.J. Westwater, On Edwards' model for long polymer chains. Commun. Math. Phys., t. 72, 1980, p. 131-174. Zbl0431.60100MR573702
  144. [133'] J. Westwater, On Edwards' model for polymer chains. III. Borel summability. Commun. Math. Phys., t. 84, 1982, p. 459-470. Zbl0498.60095MR667754
  145. [134] G.F. Lawler, A self-avoiding random walk. Duke Math. J., t. 47, 1980, p. 655-693. Zbl0445.60058MR587173
  146. [135] S. Coleman, R. Jackiw and H.D. Politzer, Spontaneous symmetry breaking in the O(N) model for large N. Phys. Rev., t. D 10, 1974, p. 2491-2499. 
  147. [136] V.B. Berestetskiĭ, Zero-charge and asymptotic freedom. Usp. Fiz. Nauk, t. 120, 1976, p. 439-454 [Soviet Phys., Uspekhi, t. 19, 1976, p. 934-943]. 
  148. [137] P. Olesen, On vacuum instability in quantum field theory. Phys. Lett., t. 73 B, 1978, p. 327-329. 
  149. [138] S. Coleman, Unpublished. Cited in [93]. 
  150. [139] G. Feldman, Modified propagators in field theory (with application to the anomalous magnetic moment of the nucleon). Proc. Roy. Soc. (London), t. A 223, 1954, p. 112-129. Zbl0055.21507
  151. [140] L.D. Landau, A.A. Abrikosov and I.M. Khalatnikov, An asymptotic expression for the photon Green function in quantum electrodynamics. Dokl. Akad. Nauk S. S. S. R., t. 95, 1954, p. 1177-1180. English translation in [16]. Zbl0059.22001MR64655
  152. [141] D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev., t. D 10, 1974, p. 3235-3253, Appendix. 
  153. [142] T.D. Lee, Some special examples in renormalizable field theory. Phys. Rev., t. 95, 1954, p. 1329-1334. Zbl0058.23204MR64658
  154. [143] G. Källén and W. Pauli, On the mathematical structure of T. D. Lee's model of a renormalizable field theory. Dan. Mat. Fys. Medd., t. 30, no. 7, 1955. Zbl0066.44301
  155. [144] S.S. Schweber, An introduction to relativistic quantum field theory. Evanston, Illinois and Elmsford, New York, Row, Peterson and Co., 1961, Section 12b. Zbl0111.43102MR127796
  156. [145] A.A. Ansel'm, Solution of equation for the meson-meson scattering amplitude in the asymptotic region . Zh. Eksp. Teor. Fiz., t. 38, 1960, p. 1887-1890 [Soviet Phys., J. E. T. P., t. 11, 1960, p. 1356-1358]. MR121191
  157. [146] T.T. Wu, Perturbation theory of pion-pion interaction. II. Two-pion approximation. Phys. Rev., t. 126, 1962, p. 2219-2226. Zbl0109.45106MR140295
  158. [147] A.B. Zamolodchikov, Yu.M. Makeenko and K.A. Ter-Martirosyan, A theory of direct four-fermion interactions. Zh. Eksp. Teor. Fiz., t. 71, 1976, p. 24-45 [Soviet Phys., J. E. T. P., t. 44, 1976, p. 11-22]. 
  159. [148] A.I. Larkin and D.E. Khmel'nitksiĭ, Phase transition in uniaxial ferroelectrics. Zh. Eksp. Teor. Fiz., t. 56, 1969, p. 2087-2098 [Soviet Phys., J. E. T. P., t. 29, 1969, p. 1123-1128]. 
  160. [149] A.M. Polyakov, Properties of long and short range correlations in the critical region. Zh. Eksp. Teor. Fiz., t. 57, 1969, p. 271-283 [Soviet Phys., J. E. T. P., t. 30, 1970, p. 151-157]. 
  161. [150] K. Symanzik, Infrared singularities and small-distance-behaviour analysis. Commun. Math. Phys., t. 34, 1973, p. 7-36. 
  162. [151] T. Tsuneto and E. Abrahams, Skeleton graph expansion for critical exponents. Phys. Rev. Lett., t. 30, 1973, p. 217-220. 
  163. [152] S.L. Ginzburg, Vertex functions and Green functions in the (4-∈)-dimensional theory of phase transitions. Zh. Eksp. Teor. Fiz., t. 66, 1974, p. 647-654 [Soviet Phys., J. E. T. P., t. 39, 1974, p. 312-315]. 
  164. [153] A.A. Abrikosov, Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Physics, t. 2, 1965, p. 5-37. 
  165. [154] Yu.A. Bychkov, L.P. Gor'kov and I.E. Dzyaloshinskiĭ, Possibility of superconductivity type phenomena in a one-dimensional system. Zh. Eksp. Teor. Fiz., t. 50, 1960, p. 738-758 [Soviet Phys., J. E. T. P., t. 23, 1966, p. 489-501]. 
  166. [155] B. Roulet, J. Gavoret and P. Nozières, Singularities in the X-ray absorption and emission of metals. I. First-order parquet calculation. Phys. Rev., t. 178, 1969, p. 1072-1083. 
  167. [156] P. Nozières, J. Gavoret and B. Roulet, Singularities in the X-ray absorption and emission of metals. II. Self-consistent treatment of divergences. Phys. Rev., t. 178, 1969, p. 1084-1096. 
  168. [157] E.C. Poggio, On the renormalization method: a different outlook, and the energy–momentum tensor in the gφ4 theory. Ann. Phys., t. 81, 1973, p. 481-518. 
  169. [158] R.W. Haymaker and R. Blankenbecler, Variational principles for crossing–symmetric off-shell equations. Phys. Rev., t. 171, 1968, p. 1581-1587. 
  170. [159] R.J. Yaes, Nonassociativity of the operators in the crossing-symmetric Bethe–Salpeter equations. Phys. Rev., t. D 2, 1970, p. 2457-2463. 
  171. [160] W. Becker and D. Grosser, Crossing and unitarity in the context of the Bethe–Salpeter equation. Nuovo Cim., t. 10 A, 1972, p. 343-361. 
  172. [161] R.G. Root, Effective potential for the O(N) model to order 1/N. Phys. Rev., t. D 10, 1974, p. 3322-3334. 
  173. [162] G. Feinberg and A. Pais, A field theory of weak interactions. I. Phys. Rev., t. 131, 1963, p. 2724-2761. II. Phys. Rev., t. 133, 1964, B 477-B 486. Zbl0121.22403MR156615
  174. [163] B.A. Arbuzov and A.T. Filippov, Vertex function in nonrenormalizable field theory. Nuovo Cim., t. 38, 1965, p. 796-806. MR191350
  175. [164] B.A. Arbuzov and A.T. Filippov, Iteration method in nonrenormalizable field theory. Zh. Eksp. Teor. Fiz., t. 49, 1965, p. 990-999 [Soviet Phys., J. E. T. P., t. 32, 1966, p. 688-693]. MR193957
  176. [165] W. Güttinger, R. Penzl and E. Pfaffelhuber, Peratization of unrenormalizable field theories. Ann. Phys., t. 33, 1965, p. 246-271. MR189526
  177. [166] T.D. Lee, Analysis of divergences in a neutral-spin-1-meson theory with parity–nonconserving interactions. Nuovo Cim., t. 59 A, 1969, p. 579-598. 
  178. [167] M.K. Volkov, Methods of quantum field theory with rapidly increasing spectral functions. Fortsch. Physik, t. 19, 1971, p. 757-782. 
  179. [168] L. Nitti, M.F. Pellicoro and M. Villani, Higher-order corrections in nonrenormalizable quantum field theories. Lett. Nuovo Cim., t. 3, 1972, p. 541-547. 
  180. [169] N.N. Khuri and A. Pais, Singular potentials and peratization. I. Rev. Mod. Phys., t. 36, 1964, p. 590-595. Zbl0128.45604MR163673
  181. [170] W.M. Frank, D.J. Land and R.M. Spector, Singular potentials. Rev. Mod. Phys., t. 43, 1971, p. 36-98. MR449255
  182. [171] T.T. Wu, Theory of Toeplitz determinants and the spin correlations of the two–dimensional Ising model. I. Phys. Rev., t. 149, 1966, p. 380-401, Section 8(H). 
  183. [172] A.A. Slavuov and A.E. Shabad, Elimination of unphysical singularities in the Feinberg-Pais theory of weak interactions. Yad. Fiz., t. 1, 1965, p. 721-728 [Sov. J. Nucl. Phys., t. 1, 1965, p. 514-519]. 
  184. [173] M.B. Halpern, Nonrenormalizable field theories. Ann. Phys., t. 39, 1966, p. 351-375. 
  185. [174] V.Sh. Gogokhiya and A.T. Filippov, Approximate methods for solving the Schrödinger equation with a singular potential. Yad. Fiz., t. 15, 1972, p. 1294-1306 [Sov. J. Nucl. Phys., t. 15, 1972, p. 714-719]. MR418696
  186. [175] G. Parisi, The theory of non-renormalizable interactions. The large N expansion. Nucl. Phys., t. B 100, 1975, p. 368-388. 
  187. [176] J.C. Taylor, The form of the divergencies in quantum electrodynamics. Proc. Roy. Soc. (London), t. 234 A, 1956, p. 296-300. Zbl0073.44802MR75826
  188. [177] J.C. Taylor, Renormalization in meson theories. Proc. Camb. Philos. Soc., t. 52, 1956, p. 534-537. Zbl0075.22103MR81176
  189. [178] K.A. Ter-Martirosian, Charge renormalization for an arbitrary, not necessarily small, value of e0. Zh. Eksp. Teor. Fiz., t. 31, 1956, p. 157-159 [Soviet Phys., J. E. T. P., t. 4, 1957, p. 443-444]. Zbl0078.44503
  190. [179] H.D. Politzer, Asymptotic freedom: An approach to the strong interactions. Phys. Rep., t. 14, 1974, p. 129-180. 
  191. [180] E.S. Fradkin and O.K. Kalashnikov, Renormalized set of equations for the Green functions in the Yang-Mills field theory and its asymptotic solution. J. Phys., t. A 9, 1976, p. 159-168. 
  192. [181] J.C. Collins and A.J. Macfarlane, New methods for the renormalization group. Phys. Rev., t. D 10, 1974, p. 1201-1212. 
  193. [182] K.G. Wilson, Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev., t. B 4, 1971, p.3174-3183. II. Phase-space cell analysis of critical behavior. Phys. Rev., t. B 4, 1971, p. 3184- 3205. Zbl1236.82017
  194. [183] L.P. Kadanoff, A. Houghton and M.C. Yalabik, Variational approximations for renormalization group transformations. J. Stat. Phys., t. 14, 1976, p. 171-203; t. 15 (E), 1976, p. 263. MR456229
  195. [184] H.W.J. Blöte and R.H. Swendsen, Critical behavior of the four-dimensional Ising model. Phys. Rev., t. B 22, 1980, p. 4481-4483. MR590597
  196. [185] B. Simon, Coupling constant analyticity for the anharmonic oscillator. Ann. Phys., t. 58, 1970, p. 76-136. MR416322
  197. [186] S. Graffi, V. Grecchi and B. Simon, Borel summability: application to the anharmonic oscillator. Phys. Lett., t. 32 B, 1970, p. 631-634. MR332068
  198. [187] G. Parisi, The perturbative expansion and the infinite coupling limit. Phys. Lett., t. 69 B, 1977, p. 329-331. 
  199. [188] G.A. BakerJr., , B.G. Nickel and D.I. Meiron, Critical indices from perturbation analysis of the Callan-Symanzik equation. Phys. Rev., t. B 17, 1978, p. 1365-1374. 
  200. [189] J.C. Leguillou and J. Zinn-Justin, Critical exponents for the n-vector model in three dimensions from field theory. Phys. Rev. Lett., t. 39, 1977, p. 95-98. 
  201. [190] J.C. Leguillou and J. Zinn-Justin, Critical exponents from field theory. Phys. Rev., t. B 21, 1980, p. 3976-3998. Zbl0978.82507MR568441
  202. [191] A.A. Vladimirov, Methods of calculating many-loop diagrams and renormalization-group analysis of the φ4 theory. Teor. Mat. Fiz., t. 36, 1978, p. 271-278 [Theor. Math. Phys., t. 36, 1978, p. 732-737]. MR507846
  203. [192] F.M. Dittes, Yu.A. Kubyshin and O.V. Tarasov, Four-loop approximation in the φ4 model. Teor. Mat. Fiz., t. 37, 1978, p. 66-73 [Theor. Math. Phys., t. 37, 1978, p. 879-884]. MR514137
  204. [193] N.N. Khuri, Solutions of the Callan-Symanzik equation in a complex neighborhood of zero coupling. Phys. Rev., t. D 12, 1975, p. 2298-2310. MR503199
  205. [194] N.N. Khuri, Borel summability and the renormalization group. Phys. Rev., t. D 16, 1977, p. 1754-1761. MR452283
  206. [195] A.D. Sokal, An improvement of Watson's theorem on Borel summability. J. Math. Phys., t. 21, 1980, p. 261-263. Zbl0441.40012MR558468
  207. [196] J. Zinn-Justin, Asymptotic estimate of perturbation theory at large orders. In: Hadron structure and lepton-hadron interactions (1977Cargèse lectures). M. Lévy et al., eds., New York-London, Plenum Press, 1979. MR563276
  208. [197] G. Parisi, The physical basis of asymptotic estimates in perturbation theory. In: Hadron structure and lepton-hadron interactions (1977Cargèse lectures). M. Lévy et al., eds., New York-London, Plenum Press, 1979. MR563277
  209. [198] L.D. Landau, Fundamental problems. In: Theoretical physics in the twentieth century, a memorial volume to Wolfgang Pauli, M. Fierz and V. F. Weisskopf, eds., New York, Interscience, 1960. Reprinted in [16]. MR115662
  210. [199] D.B. Abraham and H. Kunz, Ornstein-Zernike theory of classical fluids at low density. Phys. Rev. Lett., t. 39, 1977, p. 1011-1014. MR452115
  211. [200] G.A. BakerJr., and D. Bessis, Asymptotic decay of correlations in the spin-1/2 Ising model. J. Math. Phys., t. 22, 1981, p. 1264-1266. MR621273
  212. [201] C.M. Bender, G.S. Guralnik, R.W. Keener and K. Olaussen, Numerical study of truncated Green's-function equations. Phys. Rev., t. D 14, 1976, p. 2590-2595. 
  213. [202] B. Schroer, A necessary and sufficient condition for the softness of the trace of the energy-momentum tensor. Lett. Nuovo Cim., t. 2, 1971, p. 867-872. 
  214. [203] J.C. Collins, Renormalization of the energy-momentum tensor in φ4 theory. Phys. Rev., t. D 14, 1976, p. 1965-1976. MR421472
  215. [204] E.C. Poggio, Short-distance behavior of a gφ4 theory, and conformal-invariant four-point functions. Phys. Rev., t. D 8, 1973, p. 2431-2446. 
  216. [205] V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory (Lecture notes in physics #63), Berlin-Heidelberg-New York, Springer-Verlag, 1977. Zbl0407.43010
  217. [206] B. Geyer, V.A. Matveev, D. Robaschik and E. Wieczorek, Analytical properties of conformal invariant four point functions. Rep. Math. Phys., t. 10, 1976, p. 203- 211. Zbl0345.32008MR573222
  218. [207] G. Mack and I.T. Todorov, Conformal-invariant Green functions without ultraviolet divergences. Phys. Rev., t. D 8, 1973, p. 1764-1787. 
  219. [208] E.S. Fradkin and M.Ya. Palchik, Conformally invariant solution of quantum field theory equations (1). Nucl. Phys., t. B 99, 1975, p. 317-345. 
  220. [209] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator-product expansion in Euclidean conformal quantum field theory. Phys. Rev., t. D 13, 1976, p. 887-912. 
  221. [210] G. Mack, Osterwalder-Schrader positivity in conformal invariant quantum field theory. In: Trends in elementary particle theory (Lecture notes in physics # 37). H. Rollnik and K. Dietz, eds., Berlin-Heidelberg-New York, Springer-Verlag, 1975. 
  222. [211] R.A. Willoughby, The inverse M-matrix problem. Lin. Alg. Appl., t. 18, 1977, p. 75-94. Zbl0355.15006MR472874
  223. [212] T.L. Markham, Nonnegative matrices whose inverses are M-matrices. Proc. Amer. Math. Soc., t. 36, 1972, p. 326-330. Zbl0281.15016MR309970
  224. [213] B.B. Murphy, On the inverses of M-matrices. Proc. Amer. Math. Soc., t. 62, 1977, p. 196-198. Zbl0322.15010MR429944
  225. [214] G. Caginalp, The φ4 lattice field theory as an asymptotic expansion about the Ising limit. Ann. Phys., t. 124, 1980, p. 189-207. MR558098
  226. [215] G. Caginalp, Thermodynamic properties of the φ4 lattice field theory near the Ising limit. Ann. Phys., t. 126, 1980, p. 500-511. MR576418
  227. [216] F. Constantinescu, Strong-coupling expansion of the continuous-spin Ising model. Phys. Rev. Lett., t. 43, 1979, p. 1632-1635. 
  228. [217] L.H. Karsten and J. Smit, The vacuum polarization with SLAC lattice fermions. Phys. Lett., t. 85 B, 1979, p. 100-102. 
  229. [217'] J.M. Rabin, Long-range interactions in lattice field theory. SLAC-Report 240, June 1981. 
  230. [218] H.S. Sharatchandra, Continuum limit of lattice gauge theories in the context of renormalized perturbation theory. Phys. Rev., t. D 18, 1978, p. 2042-2055. 
  231. [218'] N. Kimura and A. Ukawa, Energy-momentum dispersion of glueballs and the restoration of Lorentz invariance in lattice gauge theories. Nucl. Phys., t. B 205 [FS5], 1982, p. 637-647. 
  232. [218''] C.B. Lang and C. Rebbi, Potential and restoration of rotational symmetry in SU(2) lattice gauge theory. Phys. Lett., t. 115 B, 1982, p. 137-142. MR669454
  233. [219] R.F. Streater, Connection between the spectrum condition and the Lorentz invariance of P(φ)2. Commun. Math. Phys., t. 26, 1972, p. 109-120. MR297266
  234. [220] E.P. Heifets and E.P. Osipov, The energy-momentum spectrum in the P(φ)2 quantum field theory. Commun. Math. Phys., t. 56, 1977, p. 161-172. Zbl1155.82303MR489513
  235. [221] A.D. Sokal, Unpublished, 1980. 
  236. [222] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory, New York-San Francisco-London, Academic Press, 1979. Zbl0405.47007MR529429
  237. [223] A.D. Sokal, Unpublished, 1980. 
  238. [224] L. Monroe and P.A. Pearce, Correlation inequalities for vector spin models. J. Stat. Phys., t. 21, 1979, p. 615-633. MR555916
  239. [225] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, New York-San Francisco-London, Academic Press, 1975. Zbl0308.47002MR493420
  240. [226] H.E. Stanley, Introduction to phase transitions and critical phenomena, New York, Oxford University Press, 1971. 
  241. [227] J. Glimm and A. Jaffe, ø42 quantum field model in the single-phase region: differentiability of the mass and bounds on critical exponents. Phys. Rev., t. D 10, 1974, p. 536-539. 
  242. [228] G.A. Baker, Jr., Critical exponent inequalities and the continuity of the inverse range of correlation. Phys. Rev. Lett., t. 34, 1975, p. 268-270. 
  243. [229] M. Aizenman, Proof of the triviality of φ4d field theory and some mean-field features of Ising models for d &gt; 4. Phys. Rev. Lett., t. 47, 1981, p. 1-4, 886 (E). MR620135
  244. [230] M. Aizenman, Geometric analysis of φ4 fields and Ising models (parts I and II). Commun. Math. Phys., t. 86, 1982, p. 1-48. Zbl0533.58034MR678000
  245. [231] J. Fröhlich, On the triviality of λφ4d theories and the approach to the critical point in d ≥ 4 dimensions. Nucl. Phys., t. B 200 [FS4], 1982, p. 281-296. MR643591
  246. [232] D. Brydges, J. Fröhlich and T. Spencer, The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys., t. 83, 1982, p. 123-150. MR648362
  247. [233] D.C. Brydges, J. Fröhlich and A.D. Sokal, The random-walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities. Courant Institute preprint. MR719815
  248. [234] D.C. Brydges, J. Fröhlich and A.D. Sokal, A new proof of the existence and nontriviality of the continuum φ42 and φ43 quantum field theories. Courant Institute preprint. 
  249. [235] R. Schrader and E. Tränkle, Analytic and numerical evidence from quantum field theory for the hyperscaling relation dv = 2Δ - γ in the d = 3 Ising model. J. Stat. Phys., t. 25, 1981, p. 269-290. MR624747
  250. [236] K. Osterwalder, Unpublished, cited in [235, section 1]. 
  251. [237] W. Driessler and J. Fröhlich, The reconstruction of local observable algebras from the Euclidean Green's functions of relativistic quantum field theory. Ann. Inst. Henri Poincaré, t. A 27, 1977, p. 221-236. Zbl0364.46051MR484123
  252. [238] J.-P. Eckmann and H. Epstein, Time-ordered products and Schwinger functions. Commun. Math. Phys., t. 64, 1979, p. 95-130. MR519920
  253. [239] A.D. Sokal, Mean-field bounds and correlation inequalities. J. Stat. Phys., t. 28, 1982, p. 431-439. MR668133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.