On where has infinitely many “bumps”
Annales de l'I.H.P. Physique théorique (1983)
- Volume: 38, Issue: 1, page 7-13
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKlaus, M.. "On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”." Annales de l'I.H.P. Physique théorique 38.1 (1983): 7-13. <http://eudml.org/doc/76185>.
@article{Klaus1983,
author = {Klaus, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian operator; essential spectrum; form-bounded; selfadjoint lower bounded operators},
language = {eng},
number = {1},
pages = {7-13},
publisher = {Gauthier-Villars},
title = {On $- \frac\{d^2\}\{dx^2\} + V$ where $V$ has infinitely many “bumps”},
url = {http://eudml.org/doc/76185},
volume = {38},
year = {1983},
}
TY - JOUR
AU - Klaus, M.
TI - On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 1
SP - 7
EP - 13
LA - eng
KW - Hamiltonian operator; essential spectrum; form-bounded; selfadjoint lower bounded operators
UR - http://eudml.org/doc/76185
ER -
References
top- [1] J.D. Morgan III, I. Op. Theory, t. 1, 1979, p. 109-115. Zbl0439.35022MR526292
- [2] M. Reed, B. Simon, Methods of Modern Mathematical Physics, t. II, Academic Press, 1975. Zbl0308.47002
- [3] B. Simon, Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971. Zbl0232.47053MR455975
- [4] D. Pearson, Comm. Math. Phys., t. 60, 1978, p. 13-36. Zbl0451.47013MR484145
- [5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, t. IV, Academic Press, 1978. Zbl0401.47001
- [6] T. Kato, Perturbation theory for linear operators, Second Ed., Springer, 1976. Zbl0342.47009MR407617
- [7] P.A. Deift, Duke Math. J., t. 45, 1978, p. 267-310. Zbl0392.47013MR495676
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.