All linear representations of the Poincaré group up to dimension 8

Stephen M. Paneitz

Annales de l'I.H.P. Physique théorique (1984)

  • Volume: 40, Issue: 1, page 35-57
  • ISSN: 0246-0211

How to cite

top

Paneitz, Stephen M.. "All linear representations of the Poincaré group up to dimension 8." Annales de l'I.H.P. Physique théorique 40.1 (1984): 35-57. <http://eudml.org/doc/76223>.

@article{Paneitz1984,
author = {Paneitz, Stephen M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {universal covering of Poincaré group},
language = {eng},
number = {1},
pages = {35-57},
publisher = {Gauthier-Villars},
title = {All linear representations of the Poincaré group up to dimension 8},
url = {http://eudml.org/doc/76223},
volume = {40},
year = {1984},
}

TY - JOUR
AU - Paneitz, Stephen M.
TI - All linear representations of the Poincaré group up to dimension 8
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 40
IS - 1
SP - 35
EP - 57
LA - eng
KW - universal covering of Poincaré group
UR - http://eudml.org/doc/76223
ER -

References

top
  1. [1] A.O. Barut and R. Raczka, Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw, 1977. Zbl0471.22021MR495836
  2. [2] W.A. Hepner, The Inhomogeneous Lorentz Group and the Conformal Group, Nuovo Cimento, t. 26, No. 2, 1962, p. 352-368. Zbl0125.45603MR143569
  3. [3] L. Hlavaty and J. Niederle, Relativistic Equations and Indecomposable Representations of the Lorentz Group SL(2, C), Czech. J. Phys. B, t. 29, No. 3, 1979, p. 283-288. MR535137
  4. [4] N. Jacobson, Lie Algebras, Interscience Publishers, New York, 1962. Zbl0121.27504MR143793
  5. [5] G. Mack and Abdus Salam, Finite-component Field Representations of the Conformal Group, Ann. Phys., t. 53, 1969, p. 174-202. MR245267
  6. [6] S.M. Paneitz and I.E. Segal, Analysis in Space-time Bundles. I. General Considerations and the Scalar Bundle, J. Func. Anal., t. 47, No. I, 1982, p. 78-142; II. The Spinor and Form Bundles, J. Func. Anal., t. 49, 1982, p. 335-414. Zbl0535.58019MR663834
  7. [7] I.E. Segal, Covariant Chronogeometry and Extreme Distances III: Macro-Micro Relations, Proc. Dirac conf., Loyola University, 1981, Int. J. Theor. Phys., t. 21, 1982, p. 851-869. MR666769
  8. [8] I.E. Segal, Chronometric cosmology and fundamental fermions, Proc. Natl. Acad. Sci., U. S. A., t. 79, 1982, p. 7961-7962. MR687500
  9. [9] I.E. Segal, in Les Problèmes Mathématiques de la Théorie Quantique des Champs, Proc. Lille conf., 1957, C. N. R. S., Paris. 
  10. [10] I.E. Segal, Interacting Quantum Fields and the Chronometric Principle, Proc. Nat. Acad. Sci., U. S. A., t. 73, October 1976, p. 3355-3359 et s. MR416367

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.