Self-adjointness of lattice Yang-Mills hamiltonians and Kato's inequality with indefinite metric

John L. Challifour

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 1, page 1-15
  • ISSN: 0246-0211

How to cite

top

Challifour, John L.. "Self-adjointness of lattice Yang-Mills hamiltonians and Kato's inequality with indefinite metric." Annales de l'I.H.P. Physique théorique 42.1 (1985): 1-15. <http://eudml.org/doc/76272>.

@article{Challifour1985,
author = {Challifour, John L.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {lattice Hamiltonian; Yang-Mills problem; Krein indefinite metric; non- abelian quantum gauge theory; self-adjointness; Feynman-Kac integral; Kato inequality},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Gauthier-Villars},
title = {Self-adjointness of lattice Yang-Mills hamiltonians and Kato's inequality with indefinite metric},
url = {http://eudml.org/doc/76272},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Challifour, John L.
TI - Self-adjointness of lattice Yang-Mills hamiltonians and Kato's inequality with indefinite metric
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 1
SP - 1
EP - 15
LA - eng
KW - lattice Hamiltonian; Yang-Mills problem; Krein indefinite metric; non- abelian quantum gauge theory; self-adjointness; Feynman-Kac integral; Kato inequality
UR - http://eudml.org/doc/76272
ER -

References

top
  1. [1] J. Bognár, Indefinite Inner Product Spaces, Springer-Vérlag, New York-Heidelberg-Berlin, 1974. Zbl0286.46028MR467261
  2. [2] T. Balaban, VII International Congress on Mathematical Physics, University of Colorado, Boulder, Colorado, August 1983. 
  3. [3] J.L. Challifour, Ann. Phys. (N. Y.), t. 136, 1981, p. 317-339. Zbl0501.28008MR641895
  4. [4] A. Devinatz, J. Functional Analysis, t. 32, 1979, p. 312-335. Zbl0412.35042MR538858
  5. [5] H. Hess, R. Schrader and D.A. Uhlenbrock, Duke Math. Journal, t. 44, 1977, p. 893-904. Zbl0379.47028MR458243
  6. [6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Kodansha, Amsterdam-Oxford-New York, Tokyo, 1981. Zbl0495.60005MR637061
  7. [7] A.M. Jaffe, O.E. Lanford and A.S. Wightman, Commun. Math. Physics, t. 15, 1969, p. 47-68. MR253682
  8. [8] R.S. Phillips, On Dissipative Operators, Lecture Series in Differential Equations, Vol. 2, ed. A. K. Aziz, Van Nostrand Mathematical Studies, n° 19, 1969, p. 65-113. Zbl0181.15301
  9. [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York-San Francisco-London, 1978. Zbl0401.47001
  10. [10] K.G. Wilson, Phys. Rev. D., t. 10, 1974, p. 2445-2459. 
  11. [11] C.N. Yang and R.L. Mills, Phys. Rev., t. 96, 1954, p. 191-195. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.