Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators
W. Kirsch; S. Kotani; B. Simon
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 42, Issue: 4, page 383-406
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKirsch, W., Kotani, S., and Simon, B.. "Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators." Annales de l'I.H.P. Physique théorique 42.4 (1985): 383-406. <http://eudml.org/doc/76289>.
@article{Kirsch1985,
author = {Kirsch, W., Kotani, S., Simon, B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operators; Poisson process; reflectionless potential},
language = {eng},
number = {4},
pages = {383-406},
publisher = {Gauthier-Villars},
title = {Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators},
url = {http://eudml.org/doc/76289},
volume = {42},
year = {1985},
}
TY - JOUR
AU - Kirsch, W.
AU - Kotani, S.
AU - Simon, B.
TI - Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 383
EP - 406
LA - eng
KW - Schrödinger operators; Poisson process; reflectionless potential
UR - http://eudml.org/doc/76289
ER -
References
top- [1] J. Avron and B. Simon, Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J., t. 50, 1983, p. 369-391. Zbl0544.35030MR700145
- [2] J. Bellissard, R. Lima and D. Testard, A metal-insulator transition for the almost Mathieu model, Commun. Math. Phys., t. 88, 1983, p. 207-234. Zbl0542.35059MR696805
- [3] W. Craig and B. Simon, Subharmonicity of the Lyaponov index, Duke Math. J., t. 50, 1983, p. 551-560. Zbl0518.35027MR705040
- [4] V. De Alfaro and T. Regge, Potential Scattering, North Holland, Amsterdam, 1965. Zbl0141.23202MR191316
- [5] P. Deift and E. Trubowitz, Inverse Scattering on the Line, Comm. Pure Appl. Math., t. 32, 1979, p. 121-251. Zbl0388.34005MR512420
- [6] E. Dinaburg and Y. Sinai, On the one dimensional Schrödinger equation with quasi–periodic potential, Funk Anal. i Pril., t. 9, 1975, p. 8-21. Zbl0333.34014MR470318
- [7] I. Goldsheid, S. Molchanov and L. Pastur, A pure point spectrum of the stochastic and one dimensional Schrödinger equation, Funct. Anal. Appl., t. 11, 1977, p. 1-10. Zbl0368.34015MR470515
- [8] I. Herbst and J. Howland, The Stark ladder and other one-dimensional external field problems, Commun. Math. Phys., t. 80, 1981, p. 23. Zbl0473.47037MR623150
- [9] J. Keller, Discriminant, transmission coefficients and stability bands of Hill's equation, J. Math. Phys., to appear. Zbl0558.34026
- [10] W. Kirsch, On a class of random Schrödinger operators, to appear inAdv. Appl. Math. Zbl0578.60059MR789852
- [11] W. Kirsch, F. Martinelli, On the spectrum of Schrödinger operators with a random potential: Commun. Math. Phys., t. 85, 1982, p. 329-350. Zbl0506.60058MR678150
- [12] W. Kirsch, F. Martinelli, On the ergodic properties of the spectrum of general random operators: J. Reine Angew. Math., t. 334, 1982, p. 141-156. Zbl0476.60058MR667454
- [13] S. Kotani, Lyaponov Indices Determine Absolutely Continuous Spectra of Stationary Random One-Dimensional Schrödinger Operators, Proc. Stoch. Anal., Kyoto, 1982. Zbl0549.60058
- [14] S. Kotani, Support Theorems for Random Schrödinger Operators, Commun. Math. Phys., to appear. Zbl0573.60054MR778625
- [15] H. Kunz and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys., t. 78, 1980, p. 201-246. Zbl0449.60048MR597748
- [16] W. Magnus and S. Winkler, Hill's Equation, Interscience, 1966; Dover Edition available. Zbl0158.09604
- [17] N. Mott and W. Twose, The theory of impurity conduction, Adv. in Physics, t. 10, 1961, p. 107-155.
- [18] R. Newton, Inverse scattering by a local impurity in a periodic potential in one dimension. J. Math. Phys., t. 24, 1983, p. 2152. Zbl0524.34026MR713548
- [19] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
- [20] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [21] B. Simon, Kotani theory for one dimensional stochastic Jacobi matrices. Comm. Math. Phys., t. 89, 1983, p. 227. Zbl0534.60057MR709464
- [22] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw–Hill, New York, 1955. Zbl0064.33002MR69338
- [23] N. Dunford and J. Schwartz, Linear Operators, Vol. II, Wiley, New York, 1963. Zbl0128.34803MR188745
- [24] T. Kato, Schrödinger operators with singular potentials. Israel J. Math., t. 13, 1973, p. 135-148. Zbl0246.35025MR333833
- [25] W. Kirsch and F. Martinelli, On the essential selfadjointness of stochastic Schrödinger operators, Duke Math. J., t. 50, 1983, p. 1255-1260. Zbl0543.60069MR726328
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.