Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators

W. Kirsch; S. Kotani; B. Simon

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 4, page 383-406
  • ISSN: 0246-0211

How to cite

top

Kirsch, W., Kotani, S., and Simon, B.. "Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators." Annales de l'I.H.P. Physique théorique 42.4 (1985): 383-406. <http://eudml.org/doc/76289>.

@article{Kirsch1985,
author = {Kirsch, W., Kotani, S., Simon, B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operators; Poisson process; reflectionless potential},
language = {eng},
number = {4},
pages = {383-406},
publisher = {Gauthier-Villars},
title = {Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators},
url = {http://eudml.org/doc/76289},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Kirsch, W.
AU - Kotani, S.
AU - Simon, B.
TI - Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 383
EP - 406
LA - eng
KW - Schrödinger operators; Poisson process; reflectionless potential
UR - http://eudml.org/doc/76289
ER -

References

top
  1. [1] J. Avron and B. Simon, Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J., t. 50, 1983, p. 369-391. Zbl0544.35030MR700145
  2. [2] J. Bellissard, R. Lima and D. Testard, A metal-insulator transition for the almost Mathieu model, Commun. Math. Phys., t. 88, 1983, p. 207-234. Zbl0542.35059MR696805
  3. [3] W. Craig and B. Simon, Subharmonicity of the Lyaponov index, Duke Math. J., t. 50, 1983, p. 551-560. Zbl0518.35027MR705040
  4. [4] V. De Alfaro and T. Regge, Potential Scattering, North Holland, Amsterdam, 1965. Zbl0141.23202MR191316
  5. [5] P. Deift and E. Trubowitz, Inverse Scattering on the Line, Comm. Pure Appl. Math., t. 32, 1979, p. 121-251. Zbl0388.34005MR512420
  6. [6] E. Dinaburg and Y. Sinai, On the one dimensional Schrödinger equation with quasi–periodic potential, Funk Anal. i Pril., t. 9, 1975, p. 8-21. Zbl0333.34014MR470318
  7. [7] I. Goldsheid, S. Molchanov and L. Pastur, A pure point spectrum of the stochastic and one dimensional Schrödinger equation, Funct. Anal. Appl., t. 11, 1977, p. 1-10. Zbl0368.34015MR470515
  8. [8] I. Herbst and J. Howland, The Stark ladder and other one-dimensional external field problems, Commun. Math. Phys., t. 80, 1981, p. 23. Zbl0473.47037MR623150
  9. [9] J. Keller, Discriminant, transmission coefficients and stability bands of Hill's equation, J. Math. Phys., to appear. Zbl0558.34026
  10. [10] W. Kirsch, On a class of random Schrödinger operators, to appear inAdv. Appl. Math. Zbl0578.60059MR789852
  11. [11] W. Kirsch, F. Martinelli, On the spectrum of Schrödinger operators with a random potential: Commun. Math. Phys., t. 85, 1982, p. 329-350. Zbl0506.60058MR678150
  12. [12] W. Kirsch, F. Martinelli, On the ergodic properties of the spectrum of general random operators: J. Reine Angew. Math., t. 334, 1982, p. 141-156. Zbl0476.60058MR667454
  13. [13] S. Kotani, Lyaponov Indices Determine Absolutely Continuous Spectra of Stationary Random One-Dimensional Schrödinger Operators, Proc. Stoch. Anal., Kyoto, 1982. Zbl0549.60058
  14. [14] S. Kotani, Support Theorems for Random Schrödinger Operators, Commun. Math. Phys., to appear. Zbl0573.60054MR778625
  15. [15] H. Kunz and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys., t. 78, 1980, p. 201-246. Zbl0449.60048MR597748
  16. [16] W. Magnus and S. Winkler, Hill's Equation, Interscience, 1966; Dover Edition available. Zbl0158.09604
  17. [17] N. Mott and W. Twose, The theory of impurity conduction, Adv. in Physics, t. 10, 1961, p. 107-155. 
  18. [18] R. Newton, Inverse scattering by a local impurity in a periodic potential in one dimension. J. Math. Phys., t. 24, 1983, p. 2152. Zbl0524.34026MR713548
  19. [19] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory, Academic Press, New York, 1979. Zbl0405.47007MR529429
  20. [20] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  21. [21] B. Simon, Kotani theory for one dimensional stochastic Jacobi matrices. Comm. Math. Phys., t. 89, 1983, p. 227. Zbl0534.60057MR709464
  22. [22] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw–Hill, New York, 1955. Zbl0064.33002MR69338
  23. [23] N. Dunford and J. Schwartz, Linear Operators, Vol. II, Wiley, New York, 1963. Zbl0128.34803MR188745
  24. [24] T. Kato, Schrödinger operators with singular potentials. Israel J. Math., t. 13, 1973, p. 135-148. Zbl0246.35025MR333833
  25. [25] W. Kirsch and F. Martinelli, On the essential selfadjointness of stochastic Schrödinger operators, Duke Math. J., t. 50, 1983, p. 1255-1260. Zbl0543.60069MR726328

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.