Maxwell's equations in the Debye potential formalism

F. Fayos; E. Llanta; J. Llosa

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 2, page 195-209
  • ISSN: 0246-0211

How to cite

top

Fayos, F., Llanta, E., and Llosa, J.. "Maxwell's equations in the Debye potential formalism." Annales de l'I.H.P. Physique théorique 43.2 (1985): 195-209. <http://eudml.org/doc/76298>.

@article{Fayos1985,
author = {Fayos, F., Llanta, E., Llosa, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Maxwell equations; Schwarzschild space-time; electromagnetic field sources; potential formalism; curved space-times},
language = {eng},
number = {2},
pages = {195-209},
publisher = {Gauthier-Villars},
title = {Maxwell's equations in the Debye potential formalism},
url = {http://eudml.org/doc/76298},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Fayos, F.
AU - Llanta, E.
AU - Llosa, J.
TI - Maxwell's equations in the Debye potential formalism
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 2
SP - 195
EP - 209
LA - eng
KW - Maxwell equations; Schwarzschild space-time; electromagnetic field sources; potential formalism; curved space-times
UR - http://eudml.org/doc/76298
ER -

References

top
  1. [1] J.M. Cohen and L.S. Kegeles, Phys. Rev. D., t. 10, 1974, p. 1070. MR406332
  2. [2] O. Laporte and G.E. Uhlenbeck, Phys. Rev., t. 37, 1931, p. 1380. Zbl0002.09001JFM57.1216.01
  3. [3] A. Nisbet, Proc. Roy. Soc., t. A231, 1955, p. 250. Zbl0065.42007MR83361
  4. [4] H. Stephani, J. Math. Phys., t. 15, 1974, p. 14. 
  5. [5] H. Flanders, Differential forms, Academic Press, New York, London, 1963. Zbl0112.32003MR162198
  6. [6] C. Godbillon, Géométrie différentielle et mécanique analytique, Herman, Paris, 1969. Zbl0174.24602MR242081
  7. [7] Choquet-Bruat et al., Analysis, manifolds and Physics, North Holland Publishing Co., Amsterdam, New York, Oxford. Zbl0385.58001
  8. [8] Newman and Penrose, J. Math. Phys., t. 3, 1952, p. 566. Zbl0108.40905
  9. [9] D. Kramer et al., Exact solutions of Einstein's field equations, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980. Zbl0449.53018
  10. [10] J.N. Goldberg et al., J. Math. Phys., t. 8, 1967, p. 2155. Zbl0155.57402
  11. [11] E. Newman and R. Penrose, J. Math. Phys., t. 7, 1966, p. 863. 
  12. [12] T. Elster, Astrophys. Space Sci., t. 71, 1980, p. 171. MR579655
  13. [13] B. Mashoon, Phys. Rev. D., t. 7, 1973, p. 2807. 
  14. [14] R. Fabri, Phys. Rev. D., t. 12, 1975, p. 933. 
  15. [15] R.A. Breuer et al., Phys. Rev. D, 8, 1973, p. 4309. 
  16. [16] R.F. Arenstorf et al., J. Math. Phys., t. 19, 1978, p. 833. MR488112
  17. [17] K.R. Pechenick et al., Il Nuovo Cimento, t. 64B2, 1981, p. 453. 
  18. [18] D.R. Brill and J.M. Cohen, Phys. Rev., t. 143, 1966, p. 1011. MR198929
  19. [19] J.M. Cohen, J. Math. Phys., t. 8, 1967, p. 1477. 
  20. [20] S. Teukolsky, Ap. J., t. 185, p. 635. 
  21. [21] E.P. Fackerell and J.R. Ipser, Phys. Rev. D, t. 5, 1972, p. 2455. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.