A characterisation of dilation-analytic operators

E. Balslev; A. Grossmann; T. Paul

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 45, Issue: 3, page 277-292
  • ISSN: 0246-0211

How to cite

top

Balslev, E., Grossmann, A., and Paul, T.. "A characterisation of dilation-analytic operators." Annales de l'I.H.P. Physique théorique 45.3 (1986): 277-292. <http://eudml.org/doc/76339>.

@article{Balslev1986,
author = {Balslev, E., Grossmann, A., Paul, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dilation-analytic operators; new representation of quantum mechanics on a space of analytic functions on the upper half-plane to a Hilbert space; analytic continuation properties of the integral kernel; dilation- analytic vectors; integral operator in momentum space},
language = {eng},
number = {3},
pages = {277-292},
publisher = {Gauthier-Villars},
title = {A characterisation of dilation-analytic operators},
url = {http://eudml.org/doc/76339},
volume = {45},
year = {1986},
}

TY - JOUR
AU - Balslev, E.
AU - Grossmann, A.
AU - Paul, T.
TI - A characterisation of dilation-analytic operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 277
EP - 292
LA - eng
KW - dilation-analytic operators; new representation of quantum mechanics on a space of analytic functions on the upper half-plane to a Hilbert space; analytic continuation properties of the integral kernel; dilation- analytic vectors; integral operator in momentum space
UR - http://eudml.org/doc/76339
ER -

References

top
  1. [1] J. Aguilar and J.M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys., t. 22, 1971, p. 269-279. Zbl0219.47011MR345551
  2. [2] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-299. Zbl0219.47005MR345552
  3. [3] D. Babbitt and E. Balslev, A characterisation of dilation-analytic potentials and vectors, J. Funct. Analysis, t. 18, 1975, p. 1-14. Zbl0304.47009MR384008
  4. [4] A. Dionisi Vici, A characterisation of dilation analytic integral kernels, Lett. Math. Phys., t. 3, 1979, p. 533-541. Zbl0434.47039MR555337
  5. [5] T. Paul, Functions analytic on the half-plane as quantum mechanical states, J. Math. Phys., t. 25, 1984, p. 3252-3263. MR761848
  6. [6] T. Paul, Affine coherent states for the radial Schrödinger equation 1. Radial harmonic oscillator and hydrogen atom. Preprint CPT 84/P. 1710, Marseille. Submitted to Ann. I. H. P. 
  7. [7] J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, 1980. Zbl0434.47001MR566954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.