Feynman diagrams and large order estimates for the exponential anharmonic oscillator

Stephen Breen

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 2, page 155-173
  • ISSN: 0246-0211

How to cite

top

Breen, Stephen. "Feynman diagrams and large order estimates for the exponential anharmonic oscillator." Annales de l'I.H.P. Physique théorique 46.2 (1987): 155-173. <http://eudml.org/doc/76355>.

@article{Breen1987,
author = {Breen, Stephen},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {functional integration; perturbation coefficients; exponential anharmonic oscillator; Feynman diagram representations; path integral estimates},
language = {eng},
number = {2},
pages = {155-173},
publisher = {Gauthier-Villars},
title = {Feynman diagrams and large order estimates for the exponential anharmonic oscillator},
url = {http://eudml.org/doc/76355},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Breen, Stephen
TI - Feynman diagrams and large order estimates for the exponential anharmonic oscillator
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 155
EP - 173
LA - eng
KW - functional integration; perturbation coefficients; exponential anharmonic oscillator; Feynman diagram representations; path integral estimates
UR - http://eudml.org/doc/76355
ER -

References

top
  1. [1] V. Grecchi and M. Maioli, Borel summability beyond the factorial growth. Ann. Inst. H. Poincaré, Sect. A., t. 41, 1984, p. 37. Zbl0551.40009MR760125
  2. [2] V. Grecchi and M. Maioli, Generalized logarithmic Borel summability. J. Math. Phys., t. 25, 1984, p. 3439-3443. Zbl0562.40006MR767548
  3. [3] E. Caliceti, V. Grecchi, S. Levoni and M. Maioli, The exponential anharmonic oscillator and the Stieltjes continued fraction, preprint. Zbl0581.34020MR784297
  4. [4] M. Maioli, Exponential perturbations of the harmonic oscillator. J. Math. Phys., t. 22, 1981, p. 1952-1958. Zbl0472.47025MR631146
  5. [5] A. Sokal, An improvement of Watson's theorem on Borel summability. J. Math. Phys., t. 21, 1980, p. 261-263. Zbl0441.40012MR558468
  6. [6] M. Reed and B. Simon, Methods of modern mathematical physics. Vol. IV, New York, Academic Press, 1975. Zbl0401.47001
  7. [7] T. Spencer, The Lipatov argument. Commun. Math. Phys., t. 74, 1980, p. 273-280. MR578044
  8. [8] S. Breen, Leading large order asymptotics for (φ4)2 perturbation theory. Commun. Math. Phys., t. 92, 1983, p. 179-194. Zbl0568.46055MR728864
  9. [9] S. Breen, Large order perturbation theory for the anharmonic oscillator. Mem. Amer. Math. Soc., to appear. Zbl0623.28010
  10. [10] J. Magnen and V. Rivasseau, The Lipatov argument for φ43 perturbation theory. Commun. Math. Phys., t. 102, 1985, p. 59-88. MR817288
  11. [11] A. Dolgov and V. Popov, Modified perturbation theories for an anharmonic oscillator. Phys. Lett., B., t. 79, 1978, p. 403-405. 
  12. [12] B. Simon, Functional integration and quantum physics, New York. Academic Press, 1979. Zbl0434.28013MR544188
  13. [13] B. Simon, The P (φ)2 Euclidean (quantum) field theory. Princeton, Princeton University Press, 1974. MR489552
  14. [14] F. Guerra, L. Rosen, and B. Simon, Boundary conditions in the P(φ)2 Euclidean field theory. Ann. Inst. H. Poincaré, Sect. A, t. 25, 1976, p. 231-334. MR441150
  15. [15] B. Simon, Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Q. Chem., t. 21, 1982, p. 3-25. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.