Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum

Alessandra Celletti; Corrado Falcolini; Anna Porzio

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 1, page 85-111
  • ISSN: 0246-0211

How to cite

top

Celletti, Alessandra, Falcolini, Corrado, and Porzio, Anna. "Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum." Annales de l'I.H.P. Physique théorique 47.1 (1987): 85-111. <http://eudml.org/doc/76373>.

@article{Celletti1987,
author = {Celletti, Alessandra, Falcolini, Corrado, Porzio, Anna},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {KAM estimates; forced pendulum; stability of a KAM torus; golden section},
language = {eng},
number = {1},
pages = {85-111},
publisher = {Gauthier-Villars},
title = {Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum},
url = {http://eudml.org/doc/76373},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Celletti, Alessandra
AU - Falcolini, Corrado
AU - Porzio, Anna
TI - Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 85
EP - 111
LA - eng
KW - KAM estimates; forced pendulum; stability of a KAM torus; golden section
UR - http://eudml.org/doc/76373
ER -

References

top
  1. [1] G. Gallavotti, The Elements of Mechanics, Springer, 1983. Zbl0512.70001MR698947
  2. [2] G. Gallavotti, Perturbation theory for classical hamiltonian systems, « Scaling and Self Similarity », Progress in Physics, t. 7, 1984. MR733479
  3. [3] G. Gallavotti, Quasi integrable mechanical systems, Les Houches Summer School 1984, procendings, ed. K. Osterwalder, R. Stora, North Holland, 1986 (in print). Zbl0662.70022MR880535
  4. [4] G. Inglese, Thesis. Stime di stabilità in presenza di piccoll denominatori nel caso di sistemi hamiltoniani unidimensionali non autonomi, Roma, 1980. 
  5. [5] A. Porzio, Stability bounds for the existence of KAM tori in a forced pendulum, in print: Boll. Unione Matematica Italiana, 1986. Zbl0605.70015MR841619
  6. [6] A. Celletti, C. Falcolini, A. Porzio, Rigorous KAM stability statements for non autonomous one-dimensional hamiltonian systems, 1986. Zbl0682.70019
  7. [7] D. Escande, F. Doveil, Renormalization method for computing the threshold of the large scale stochasticity in two degrees of freedom hamiltonian systems. Journ. Stat. Phys., t. 26, 1981, p. 2. MR643709
  8. [8] G.H. Hardy, E.M. Wright, The theory of numbers, Oxford, 1979. Zbl0423.10001
  9. [9] M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. Astr. Journ., t. 69, 1964, p. 1. MR158746
  10. [10] M. Hénon, Exploration numérique du problème restreint. Ann. d'Astroph., t. 28, 1965, p. 3. Zbl0138.23803
  11. [11] G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli, J.M. Strelcyn, Nuovo Cimento, t. 50 B, 1979, p. 211. MR534103
  12. [12] B. Chirikov, Phys. Rep., t. 52, 1979. 
  13. [13] J. Greene, Journ. of Math. Phys., t. 20, 1979. 
  14. [14] C. Liverani, G. Servizi, G. Turchetti, Lettere al Nuovo Cimento, t. 39, 1984, p. 417. MR746559
  15. [15] C. Liverani, G. Turchetti, Improved KAM estimates for the Siegel radius, 1985. Zbl0644.70019MR881322
  16. [16] A. Celletti, L. Chierchia, Rigorous Estimates for a Computer-Assisted KAM theory, to appear in J. of Math. Phys. Zbl0651.58011MR904422
  17. [17] Vax-11 Fortran IV, Plus, Language reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978. 
  18. [18] G. Benettin, L. Galgani, A. Giorgilli, Classical perturbation theory for systems of weakly coupled rotators, 1984. Zbl0642.58043MR818425
  19. [19] Vax-11 Fortran IV, Plus, User's Guide, Digital Equipment Corporation, Maynard, Massachusetts, 1978. 
  20. [20] Vax-11 Fortran IV, Plus, Run-time library reference manual, Digital Equipment Corporation, Maynard, Massachusetts, 1978. 
  21. [21] D. Escande, private communication. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.