A geometric setting for classical molecular dynamics

Toshihiro Iwai

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 2, page 199-219
  • ISSN: 0246-0211

How to cite

top

Iwai, Toshihiro. "A geometric setting for classical molecular dynamics." Annales de l'I.H.P. Physique théorique 47.2 (1987): 199-219. <http://eudml.org/doc/76377>.

@article{Iwai1987,
author = {Iwai, Toshihiro},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {many-particle system; Eckart frame; Hamiltonian system; molecular dynamics; Coriolis force},
language = {eng},
number = {2},
pages = {199-219},
publisher = {Gauthier-Villars},
title = {A geometric setting for classical molecular dynamics},
url = {http://eudml.org/doc/76377},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Iwai, Toshihiro
TI - A geometric setting for classical molecular dynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 199
EP - 219
LA - eng
KW - many-particle system; Eckart frame; Hamiltonian system; molecular dynamics; Coriolis force
UR - http://eudml.org/doc/76377
ER -

References

top
  1. [1] C. Eckart, Some studies concerning rotating axes and polyatomic molecules. Phys. Rev., t. 47, 1935, p. 552-558. Zbl0011.38003
  2. [2] J.D. Louck and H.W. Galbraith, Eckart vectors, Eckart frames, and polyatomic molecules. Rev. Mod. Phys., t. 48, 1976, p. 69-106. MR495829
  3. [3] B.T. Sutcliffe, The Eckart Hamiltonian for molecules, A critical exposition, in The Quantum Dynamics of Molecules, ed. by R. G. Woolley, NATO ASI Ser. Plenum, New York, 1980. 
  4. [4] A. Guichardet, On rotation and vibration motions of molecules. Ann. Inst. Henri Poincaré, t. 40, 1984, p. 329-342. Zbl0545.53008MR770086
  5. [5] J. Marsden and W. Weinstein, Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., t. 5, 1974, p. 121-130. Zbl0327.58005MR402819
  6. [6] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964. Zbl0129.13102MR193578
  7. [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. I, Interscience Publishers, New York, 1963. Zbl0119.37502MR152974
  8. [8] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981. Zbl0481.58002MR643361
  9. [9] C. Nash and S. Sen, Topology and Geometry for Physicists, Academic Press, New York, 1983. Zbl0529.53001MR776042
  10. [10] T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Physics Reports, t. 66, No. 6, 1980. MR598586
  11. [11] V.I. Arnold, Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978. Zbl0386.70001MR690288
  12. [12] R. Abraham and J.E. Marsden, Foundations of Mechanics, Benjamin/Cummings. Reading. MA, 1978. Zbl0393.70001MR515141
  13. [13] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics. Cambridge Univ. Press, Cambridge, 1984. Zbl0576.58012MR770935
  14. [14] E.B. Wilson, Jr., J.C. Decius and P.C. Cross, Molecular Vibrations. McGraw Hill, New York, 1955. 
  15. [15] T. Iwai, A gauge theory for the quantum planar three-body problem. J. Math. Phys., t. 28, 1987, p. 964-974. Zbl0625.53062MR880327
  16. [16] T. Iwai, A geometric setting for internal motions of the quantum three-body system. J. Math. Phys., t. 28, 1987, p. 1315-1326. MR890002
  17. [17] Y. Matsushima, Differentiable Manifolds, Marcel Dekker, New York, 1972. Zbl0233.58001MR346831
  18. [18] S. Male, Topology and mechanics. I, Invent. Math., t. 10, 1970, p. 305-331. Zbl0202.23201MR309153
  19. [19] J.E. Marsden, Lectures on Geometric Methods in Mathematical Physics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981. Zbl0485.70001MR619693
  20. [20] A. Wintner, The Analytical Foundations of Celestial Mechanics. Princeton Univ. Press, Princeton, NJ, 1941. Zbl0026.02302MR5824
  21. [21] M. Kummer, On the construction of the reduced space of a Hamiltonian system with symmetry. Indiana Univ. Math. J., t. 30, 1981, p. 281-291. Zbl0425.70019MR604285
  22. [22] R. Montgomery, The structure of reduced cotangent phase space for nonfree group actions. Preprint, Univ. of Calif., Berkeley, PAM-143, 1983. 
  23. [23] L. Bos and M.J. Gotay, Reduced canonical formalism for a particle with zero angular momentum, in 13th Internat. Colloq. on Group Theoret. Methods in Physics, ed. by W. W. ZACHARY, World Scientific, Singapore, 1984, p. 83-91. Zbl0567.58007MR815670
  24. [24] S. Smale, Topology and mechanics. II, Invent. Math., t. 11, 1970, p. 45-64. See also [12], Chap. 10. Zbl0203.26102MR321138
  25. [25] A. Tachibana and T. Iwai, Complete molecular Hamiltonian based on the Born–Oppenheimer adiabatic approximation, Phys. Rev., t. A33, p. 2262-2269. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.