A geometric setting for classical molecular dynamics
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 47, Issue: 2, page 199-219
- ISSN: 0246-0211
Access Full Article
topHow to cite
topIwai, Toshihiro. "A geometric setting for classical molecular dynamics." Annales de l'I.H.P. Physique théorique 47.2 (1987): 199-219. <http://eudml.org/doc/76377>.
@article{Iwai1987,
author = {Iwai, Toshihiro},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {many-particle system; Eckart frame; Hamiltonian system; molecular dynamics; Coriolis force},
language = {eng},
number = {2},
pages = {199-219},
publisher = {Gauthier-Villars},
title = {A geometric setting for classical molecular dynamics},
url = {http://eudml.org/doc/76377},
volume = {47},
year = {1987},
}
TY - JOUR
AU - Iwai, Toshihiro
TI - A geometric setting for classical molecular dynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 199
EP - 219
LA - eng
KW - many-particle system; Eckart frame; Hamiltonian system; molecular dynamics; Coriolis force
UR - http://eudml.org/doc/76377
ER -
References
top- [1] C. Eckart, Some studies concerning rotating axes and polyatomic molecules. Phys. Rev., t. 47, 1935, p. 552-558. Zbl0011.38003
- [2] J.D. Louck and H.W. Galbraith, Eckart vectors, Eckart frames, and polyatomic molecules. Rev. Mod. Phys., t. 48, 1976, p. 69-106. MR495829
- [3] B.T. Sutcliffe, The Eckart Hamiltonian for molecules, A critical exposition, in The Quantum Dynamics of Molecules, ed. by R. G. Woolley, NATO ASI Ser. Plenum, New York, 1980.
- [4] A. Guichardet, On rotation and vibration motions of molecules. Ann. Inst. Henri Poincaré, t. 40, 1984, p. 329-342. Zbl0545.53008MR770086
- [5] J. Marsden and W. Weinstein, Reduction of symplectic manifolds with symmetry. Rep. Math. Phys., t. 5, 1974, p. 121-130. Zbl0327.58005MR402819
- [6] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964. Zbl0129.13102MR193578
- [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. I, Interscience Publishers, New York, 1963. Zbl0119.37502MR152974
- [8] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981. Zbl0481.58002MR643361
- [9] C. Nash and S. Sen, Topology and Geometry for Physicists, Academic Press, New York, 1983. Zbl0529.53001MR776042
- [10] T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Physics Reports, t. 66, No. 6, 1980. MR598586
- [11] V.I. Arnold, Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978. Zbl0386.70001MR690288
- [12] R. Abraham and J.E. Marsden, Foundations of Mechanics, Benjamin/Cummings. Reading. MA, 1978. Zbl0393.70001MR515141
- [13] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics. Cambridge Univ. Press, Cambridge, 1984. Zbl0576.58012MR770935
- [14] E.B. Wilson, Jr., J.C. Decius and P.C. Cross, Molecular Vibrations. McGraw Hill, New York, 1955.
- [15] T. Iwai, A gauge theory for the quantum planar three-body problem. J. Math. Phys., t. 28, 1987, p. 964-974. Zbl0625.53062MR880327
- [16] T. Iwai, A geometric setting for internal motions of the quantum three-body system. J. Math. Phys., t. 28, 1987, p. 1315-1326. MR890002
- [17] Y. Matsushima, Differentiable Manifolds, Marcel Dekker, New York, 1972. Zbl0233.58001MR346831
- [18] S. Male, Topology and mechanics. I, Invent. Math., t. 10, 1970, p. 305-331. Zbl0202.23201MR309153
- [19] J.E. Marsden, Lectures on Geometric Methods in Mathematical Physics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981. Zbl0485.70001MR619693
- [20] A. Wintner, The Analytical Foundations of Celestial Mechanics. Princeton Univ. Press, Princeton, NJ, 1941. Zbl0026.02302MR5824
- [21] M. Kummer, On the construction of the reduced space of a Hamiltonian system with symmetry. Indiana Univ. Math. J., t. 30, 1981, p. 281-291. Zbl0425.70019MR604285
- [22] R. Montgomery, The structure of reduced cotangent phase space for nonfree group actions. Preprint, Univ. of Calif., Berkeley, PAM-143, 1983.
- [23] L. Bos and M.J. Gotay, Reduced canonical formalism for a particle with zero angular momentum, in 13th Internat. Colloq. on Group Theoret. Methods in Physics, ed. by W. W. ZACHARY, World Scientific, Singapore, 1984, p. 83-91. Zbl0567.58007MR815670
- [24] S. Smale, Topology and mechanics. II, Invent. Math., t. 11, 1970, p. 45-64. See also [12], Chap. 10. Zbl0203.26102MR321138
- [25] A. Tachibana and T. Iwai, Complete molecular Hamiltonian based on the Born–Oppenheimer adiabatic approximation, Phys. Rev., t. A33, p. 2262-2269.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.