“Geometry” of spin 3 gauge theories
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 47, Issue: 3, page 277-307
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDamour, T., and Deser, S.. "“Geometry” of spin 3 gauge theories." Annales de l'I.H.P. Physique théorique 47.3 (1987): 277-307. <http://eudml.org/doc/76380>.
@article{Damour1987,
author = {Damour, T., Deser, S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Riemann tensors; curvature; gauge theories; Weyl tensors; conformal flatness},
language = {eng},
number = {3},
pages = {277-307},
publisher = {Gauthier-Villars},
title = {“Geometry” of spin 3 gauge theories},
url = {http://eudml.org/doc/76380},
volume = {47},
year = {1987},
}
TY - JOUR
AU - Damour, T.
AU - Deser, S.
TI - “Geometry” of spin 3 gauge theories
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 3
SP - 277
EP - 307
LA - eng
KW - Riemann tensors; curvature; gauge theories; Weyl tensors; conformal flatness
UR - http://eudml.org/doc/76380
ER -
References
top- [1] B. De Wit and D.Z. Freedman, Phys. Rev., t. D 21, 1980, p. 358.
- [2] A.K.H. Bengtsson and I. Bengtsson, Class. Quant. Grav., t. 3, 1986, p. 927.
- [3] T. Damour and S. Deser, Class. Quant. Grav., t. 4, 1987, p. L95. MR895891
- [4] C. Aragone, S. Deser and Z. Yang, Ann. Phys., october 1987, in press.
- [5] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, San Francisco, 1973. MR418833
- [6] R. Penrose and W. Rindler, Spinors and space-time, Cambridge University Press, Cambridge, 1984; for Young tableau symmetry see pp. 143-146. Zbl0538.53024MR776784
- [7] H. Weyl, The classical groups, Princeton University Press, Princeton, 1946. Zbl1024.20502MR1488158
- [8] M. Hamermesh, Group theory and its application to physical problems, Addison–Wesley, Reading, 1962; H. Boerner, Representations of groups, North-Holland, Amsterdam, 1963. Zbl0100.36704MR136667
- [9] J.S. Frame, G. de B. Robinson and R.M. Thrall, Can. J. Math., t. 6, 1954, p. 316. Zbl0055.25404MR62127
- [10] B.G. Schmidt, Commun. Math. Phys., t. 36, 1974, p. 73; H. Friedrich and B.G. Schmidt, Proc. Roy. Soc. (London), in press. Zbl0282.53042
- [11] F.A.E. Pirani, in Lectures on General Relativity, (1964, Brandeis summer lectures), S. Deser and K. W. Ford editors, Prentice-Hall, Englewood Cliffs, 1965, p. 249.
- [12] L. Bel, C. R. Acad. Sc. Paris, t. 247, 1958, p. 1094; and t. 248, 1959, p. 1297. Zbl0082.41204MR99871
- [13] L.P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, 1949 ; § 28. Zbl0041.29403MR35081
- [14] E. Cotton, C. R. Acad. Sc. Paris, t. 127, 1898, p. 349-351 (where it is stated that a 3-geometry is conformally flat iff the covariant 3-tensor C3 = V 1 × S2 vanishes); E. COTTON, Ann. de Toulouse (2e série), t. 1, 1899, p. 385-438 (where full proofs are given, and where the dual (D2 in our notation, see eq. (4. 3 a) of the text) of C3 is introduced). JFM29.0573.03
- [15] W. Siegel, Nucl. Phys. B., t. 156, 1979, p. 135. MR541505
- [16] J. Schonfeld, Nucl. Phys. B., t. 185, 1981, p. 157.
- [17] R. Jackiw and S. Templeton, Phys. Rev. D., t. 23, 1981, p. 2291.
- [18] S. Deser, R. Jackiw and S. Templeton, Phys. Rev. Lett., t. 48, 1982, p. 975; Ann. Phys., t. 140, 1982, p. 372. MR665601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.