On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model

G. D. Raikov

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 1, page 39-75
  • ISSN: 0246-0211

How to cite

top

Raikov, G. D.. "On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model." Annales de l'I.H.P. Physique théorique 48.1 (1988): 39-75. <http://eudml.org/doc/76390>.

@article{Raikov1988,
author = {Raikov, G. D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Ideal linear magnetohydrodynamics; magnetoactive plasma; exterior magnetic field; toroidal domain; perfectly conducting surface; asymptotic behaviour of negative eigenvalues},
language = {eng},
number = {1},
pages = {39-75},
publisher = {Gauthier-Villars},
title = {On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model},
url = {http://eudml.org/doc/76390},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Raikov, G. D.
TI - On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 39
EP - 75
LA - eng
KW - Ideal linear magnetohydrodynamics; magnetoactive plasma; exterior magnetic field; toroidal domain; perfectly conducting surface; asymptotic behaviour of negative eigenvalues
UR - http://eudml.org/doc/76390
ER -

References

top
  1. [1] G. Bateman, MHD Instabilities. MIT, Cambridge, Massachusetts, 1978. 
  2. [2] C. Mercier, H. Luc, The MHD Approach to the Problem of Plasma Confinement in Closed Magnetic Configurations. EUR 5127e, Luxembourg, 1974. 
  3. [3] J.P. Freidberg, Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev. Mod. Phys., t. 54, no. 3, 1982, p. 801-902. 
  4. [4] C. Mercier, Un critère nécessaire de stabilité hydrodynamique pour un plasma en symétrie de révolution. Nucl. Fusion, t. 1, 1961, p. 47-53. MR154537
  5. [5] J.L. Greene, J.L. Johnson, Interchange instabilities in ideal hydromagnetic theory. Plasma Phys., t. 10, 1968, p. 729-745. Zbl0162.59702
  6. [6] D. Lortz, Sufficient stability criteria for general MHD-equilibria. Nucl. Fusion, t. 13, 1973, p. 817-819. 
  7. [7] D. Lortz, J. Nührenberg, Comparison between necessary and sufficient criteria for axially symmetric equilibria. Nucl. Fusion, t. 13, 1973, p. 821-827. 
  8. [8] J.P. Goedbloed, Spectrum of ideal magnetohydrodynamics of axisymmetric toroidal systems. Phys. Fluids, t. 18, 1975 (10), p. 1258-1268. Zbl0314.76084MR398273
  9. [9] J. Descloux, G. Geymonat, On the essential spectrum of an operator relative to the stability of a plasma in a toroidal geometry. École Polytechnique Fédérale de Lausanne Report, October, 1979. 
  10. [10] A.E. Lifshits, The continuous spectrum in some problems of mathematical physics. Dokl. Akad. Nauk SSSR, vol. 277, no. 5, 1984, p. 1105-1108 (in Russian). MR759975
  11. [11] E., Hamieri, On the essential spectrum of ideal magnetohydrodynamics. Comm. Pure Appl. Math., t. 38, 1985, p. 43-66. Zbl0542.76067MR768104
  12. [12] Y.P. Pao, Instabilities in toroidal plasmas. Phys. Fluids, t. 18, 1975 (9), p. 1192-1196. 
  13. [13] R.L. Dewar, A.H. Glasser, Ballooning mode spectrum in deneral toroidal systems. Phys. Fluids, t. 26, 1983 (10), p. 3038-3052. Zbl0538.76123
  14. [14] G.D. Raikov, Spectral properties of a linear magnetohydrodynamic model with axial symmetry. Vestnik LGU, ser. 4, 1986, vyp. 2, p. 74-76 (in Russian). 
  15. [15] M.S. Birman, M.Z. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. American Math. Society Translations, Series 2, 114AMS, Providence, R. I., 1980. Zbl0426.46020MR562305
  16. [16] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I, Functional Analysis. Academic Press, New York, 1972. Zbl0242.46001MR493419
  17. [17] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV, Analysis of operators. Academic Press, New York, 1978. Zbl0401.47001MR493421
  18. [18] L.D. Landau, E.M. Lifshits, Course of Theoretical Physics, VIII, Electrodynamics of Continuous Media. Pergamon International Library of Science, Technology, Engineering and Social Studies, Pergamon Press, Oxford-Elmsford, N. Y., 1984. MR766230
  19. [19] Yu.M. Berezanskii, Expansions in eigenfunctions of self-adjoint operators. Translations of Mathematical Monographs, vol. 17, AMS, Providence, R. I., 1968. Zbl0157.16601
  20. [20] O.A. Ladyženskaya, N.N. Uraltseva, Linear and quasilinear equations of elliptic type. Nauka, Moscow, 1964 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.