On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model
Annales de l'I.H.P. Physique théorique (1988)
- Volume: 48, Issue: 1, page 39-75
- ISSN: 0246-0211
Access Full Article
topHow to cite
topRaikov, G. D.. "On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model." Annales de l'I.H.P. Physique théorique 48.1 (1988): 39-75. <http://eudml.org/doc/76390>.
@article{Raikov1988,
author = {Raikov, G. D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Ideal linear magnetohydrodynamics; magnetoactive plasma; exterior magnetic field; toroidal domain; perfectly conducting surface; asymptotic behaviour of negative eigenvalues},
language = {eng},
number = {1},
pages = {39-75},
publisher = {Gauthier-Villars},
title = {On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model},
url = {http://eudml.org/doc/76390},
volume = {48},
year = {1988},
}
TY - JOUR
AU - Raikov, G. D.
TI - On the asymptotics of the negative eigenvalues for an axisymmetric idealmagnetohydrodynamic model
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 39
EP - 75
LA - eng
KW - Ideal linear magnetohydrodynamics; magnetoactive plasma; exterior magnetic field; toroidal domain; perfectly conducting surface; asymptotic behaviour of negative eigenvalues
UR - http://eudml.org/doc/76390
ER -
References
top- [1] G. Bateman, MHD Instabilities. MIT, Cambridge, Massachusetts, 1978.
- [2] C. Mercier, H. Luc, The MHD Approach to the Problem of Plasma Confinement in Closed Magnetic Configurations. EUR 5127e, Luxembourg, 1974.
- [3] J.P. Freidberg, Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev. Mod. Phys., t. 54, no. 3, 1982, p. 801-902.
- [4] C. Mercier, Un critère nécessaire de stabilité hydrodynamique pour un plasma en symétrie de révolution. Nucl. Fusion, t. 1, 1961, p. 47-53. MR154537
- [5] J.L. Greene, J.L. Johnson, Interchange instabilities in ideal hydromagnetic theory. Plasma Phys., t. 10, 1968, p. 729-745. Zbl0162.59702
- [6] D. Lortz, Sufficient stability criteria for general MHD-equilibria. Nucl. Fusion, t. 13, 1973, p. 817-819.
- [7] D. Lortz, J. Nührenberg, Comparison between necessary and sufficient criteria for axially symmetric equilibria. Nucl. Fusion, t. 13, 1973, p. 821-827.
- [8] J.P. Goedbloed, Spectrum of ideal magnetohydrodynamics of axisymmetric toroidal systems. Phys. Fluids, t. 18, 1975 (10), p. 1258-1268. Zbl0314.76084MR398273
- [9] J. Descloux, G. Geymonat, On the essential spectrum of an operator relative to the stability of a plasma in a toroidal geometry. École Polytechnique Fédérale de Lausanne Report, October, 1979.
- [10] A.E. Lifshits, The continuous spectrum in some problems of mathematical physics. Dokl. Akad. Nauk SSSR, vol. 277, no. 5, 1984, p. 1105-1108 (in Russian). MR759975
- [11] E., Hamieri, On the essential spectrum of ideal magnetohydrodynamics. Comm. Pure Appl. Math., t. 38, 1985, p. 43-66. Zbl0542.76067MR768104
- [12] Y.P. Pao, Instabilities in toroidal plasmas. Phys. Fluids, t. 18, 1975 (9), p. 1192-1196.
- [13] R.L. Dewar, A.H. Glasser, Ballooning mode spectrum in deneral toroidal systems. Phys. Fluids, t. 26, 1983 (10), p. 3038-3052. Zbl0538.76123
- [14] G.D. Raikov, Spectral properties of a linear magnetohydrodynamic model with axial symmetry. Vestnik LGU, ser. 4, 1986, vyp. 2, p. 74-76 (in Russian).
- [15] M.S. Birman, M.Z. Solomjak, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. American Math. Society Translations, Series 2, 114AMS, Providence, R. I., 1980. Zbl0426.46020MR562305
- [16] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I, Functional Analysis. Academic Press, New York, 1972. Zbl0242.46001MR493419
- [17] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV, Analysis of operators. Academic Press, New York, 1978. Zbl0401.47001MR493421
- [18] L.D. Landau, E.M. Lifshits, Course of Theoretical Physics, VIII, Electrodynamics of Continuous Media. Pergamon International Library of Science, Technology, Engineering and Social Studies, Pergamon Press, Oxford-Elmsford, N. Y., 1984. MR766230
- [19] Yu.M. Berezanskii, Expansions in eigenfunctions of self-adjoint operators. Translations of Mathematical Monographs, vol. 17, AMS, Providence, R. I., 1968. Zbl0157.16601
- [20] O.A. Ladyženskaya, N.N. Uraltseva, Linear and quasilinear equations of elliptic type. Nauka, Moscow, 1964 (in Russian).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.