Quantized fields and operators on a partial inner product space

J. Shabani

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 2, page 97-104
  • ISSN: 0246-0211

How to cite

top

Shabani, J.. "Quantized fields and operators on a partial inner product space." Annales de l'I.H.P. Physique théorique 48.2 (1988): 97-104. <http://eudml.org/doc/76396>.

@article{Shabani1988,
author = {Shabani, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {partial inner product space; weak sequential completion; quantized fields; Minkowski space-time},
language = {eng},
number = {2},
pages = {97-104},
publisher = {Gauthier-Villars},
title = {Quantized fields and operators on a partial inner product space},
url = {http://eudml.org/doc/76396},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Shabani, J.
TI - Quantized fields and operators on a partial inner product space
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 97
EP - 104
LA - eng
KW - partial inner product space; weak sequential completion; quantized fields; Minkowski space-time
UR - http://eudml.org/doc/76396
ER -

References

top
  1. [1] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and all that. Benjamin, New York, 1964. Zbl0135.44305MR161603
  2. A. Jost, The General Theory of Quantized Fields. AMS, Providence, Rhode Island, 1965. Zbl0127.19105
  3. A.S. Wightman, Introduction to Some Aspects of the Relativistic Dynamics of Quantized Fields. Lecture Notes, Bures-sur-Yvette, 1964. 
  4. [2] R. Haag, Ann. Physik., t. 11, 1963, p. 29. MR155590
  5. [3] R. Ascoli, G. Epifanio and A. Restivo, Commun. Math. Phys., t. 18, 1970, p. 291. Riv. Mat. University of Parma, t. 3, 1974, p. 21. Zbl0197.53502MR272300
  6. [4] J.-P. Antoine and A. Grossmann, J. Funct. Anal., t. 23, 1976, p. 369 and 379. Zbl0359.46020
  7. [5] J.-P. Antoine and F. Mathot, Ann. Inst. H. Poincaré, t. 37, 1982, p. 29. MR667881
  8. [6] J.-P. Antoine, J. Math. Phys., t. 21, 1980, p. 268. Zbl0477.46005MR558469
  9. [7] J.-P. Antoine, J. Math. Phys., t. 21, 1980, p. 2067. Zbl0477.46006MR579203
  10. [8] K. Fredenhagen and J. Hertel, Comm. Math. Phys., t. 80, 1981, p. 555. Zbl0472.46051MR628511
  11. [9] A. Grossmann, Comm. Math. Phys., t. 4, 1967, p. 203. Zbl0144.47804MR210413
  12. [10] A. Grossmann, Comm. Math. Phys., t. 2, 1966, p. 1. Zbl0134.31701MR196460
  13. [11] E. Nelson, J. Funct. Anal., t. 12, 1973, p. 97 and 221. Zbl0252.60053
  14. [12] J.-P. Antoine and W. Karwowski, J. Math. Phys., t. 22, 1981, p. 2489. Zbl0494.46023MR640657
  15. [13] G. Lassner, Physica, t. 124 A, 1984, p. 471. Zbl0599.47072MR759198
  16. [14] J. Shabani, On some class of topological quasi *-algebra. Preprint, University of Burundi, 1987. Zbl0731.46029MR1117784
  17. [15] G. Epifanio and C. Trapani, Ann. Inst. Henri Poincaré, t. 46, 1987, p. 175. Zbl0617.46073MR887146
  18. [16] H.J. Borchers, in RCP 25 (Strasbourg), t. 22, 1975, p. 26 and also in Quantum Dynamics : Models and Mathematics Ed. L. Streit, Acta Phys. Austr., Suppl.16, 1976, p. 15. 
  19. J.-P. Antoine and W. Karwowski, Publ. RIMS, Kyoto University, t. 21, 1985, p. 205. Addendum, ibid, t. 22, 1986, p. 507. Zbl0609.47058
  20. [17] M. Friedrich and G. Lassner, Wiss. Z. Karl-Marx University, Leipzig. Math. Naturwiss, t. R 27, 1978, p. 245. Zbl0404.47021
  21. K.-D. Kursten, On topological properties of domains of unbounded operator algebras, in Proceedings of the II International Conference on Operator Algebras, Ideals and their Applications in Theoretical Physics, Leipzig1983, edited by H. Baumgartel, G. Lassner, A. Pietsch and A. Uhlmann (Teubner, Leipzig, 1984). Zbl0544.47040MR763529
  22. [18] G. Köthe, Topological Vector Spaces I. Springer-Verlag, Berlin, 1969. Zbl0179.17001MR178335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.