QED on a lattice : I. Infrared asymptotic freedom for bounded fields

J. Dimock

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 4, page 355-386
  • ISSN: 0246-0211

How to cite

top

Dimock, J.. "QED on a lattice : I. Infrared asymptotic freedom for bounded fields." Annales de l'I.H.P. Physique théorique 48.4 (1988): 355-386. <http://eudml.org/doc/76406>.

@article{Dimock1988,
author = {Dimock, J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Euclidean quantum electrodynamics; fermions; photon interaction; renormalization group},
language = {eng},
number = {4},
pages = {355-386},
publisher = {Gauthier-Villars},
title = {QED on a lattice : I. Infrared asymptotic freedom for bounded fields},
url = {http://eudml.org/doc/76406},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Dimock, J.
TI - QED on a lattice : I. Infrared asymptotic freedom for bounded fields
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 355
EP - 386
LA - eng
KW - Euclidean quantum electrodynamics; fermions; photon interaction; renormalization group
UR - http://eudml.org/doc/76406
ER -

References

top
  1. [1] T. Balaban, Propagators and renormalization transformations for lattice gauge theories. I: Commun. Math. Phys., t. 95, p. 17-40, II: Commun. Math. Phys., t. 95, 1984, p. 41-51. Zbl0579.35070MR757052
  2. [2] T. Balaban, Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys., t. 102, 1985, p. 255-276. Zbl0595.58047MR820575
  3. [3] T. Balaban, Renormalization group approach to lattice gauge field theories. Commun. Math. Phys., t. 109, 1987, p. 249-301. Zbl0611.53080MR880416
  4. [4] T. Balaban and A. Jaffe, Constructive Gauge Theory, in Fundamental Problems of Gauge Field Theory. G. Velo and A. Wightman, Eds., New York, Plenum, 1986. MR878764
  5. [5] T. Balaban, J. Imbrie and A. Jaffe, Renormalization of the Higgs model: minimizers, propagators, and the stability of mean field theory. Commun. Math. Phys., t. 97, 1985, p. 294-329. Zbl1223.81136MR782971
  6. [6] D. Brydges, A short course on cluster expansions, in Critical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, Eds., Amsterdam, North Holland, 1986. Zbl0659.60136MR880525
  7. [7] J. Dimock, Infrared asymptotic freedom for the pseudoscalar Yukawa Model at the critical point. Commun. Math. Phys., t. 109, 1987, p. 379-395. MR882806
  8. [8] P. Federbush, A phase cell approach to Yang Mills Theory, IV: The choice of variables. Commun. Math. Phys., t. 114, 1988, p. 317-343. MR928229
  9. [9] K. Gawedski and A. Kupiainen, Renormalization group study of a critical lattice model. Commun. Math. Phys., t. 82, 1981, p. 407-433. MR641771
  10. [10] K. Gawedski and A. Kupiainen, Block spin renormalization group for dipole gas and (∇φ)4. Annals of Physics, t. 147, 1983, p. 198-243. MR707525
  11. [11] K. Gawedski and A. Kupiainen, Massless lattice (φ4)4 theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys., t. 99, 1985, p. 197-252. MR790736
  12. [12] K. Gawedski and A. Kupiainen, Asymptotic freedom beyond perturbation theory, in Critical Phenomena, Random Systems, Gauge Theories. K. Osterwalder and R. Stora, Eds., Amsterdam, North Holland, 1986. Zbl0706.47039
  13. [13] E. Seiler, Gauge theories as a problem in constructive quantum field theory and statistical mechanics. Lectures Notes in Physics, t. 159, Berlin, Heidelberg, New York, Springer, 1982. MR785937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.