Produced representations of Lie algebras and superfields

Rogier Brussee

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 1, page 1-15
  • ISSN: 0246-0211

How to cite

top

Brussee, Rogier. "Produced representations of Lie algebras and superfields." Annales de l'I.H.P. Physique théorique 50.1 (1989): 1-15. <http://eudml.org/doc/76434>.

@article{Brussee1989,
author = {Brussee, Rogier},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {produced representations; Lie superalgebras; Poincaré superalgebra; Minkowski superspace},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Gauthier-Villars},
title = {Produced representations of Lie algebras and superfields},
url = {http://eudml.org/doc/76434},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Brussee, Rogier
TI - Produced representations of Lie algebras and superfields
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 1
EP - 15
LA - eng
KW - produced representations; Lie superalgebras; Poincaré superalgebra; Minkowski superspace
UR - http://eudml.org/doc/76434
ER -

References

top
  1. [1] R.J. Blattner, Induced and produced representation of Lie algebras. Trans. A. M. S., V. 144, 1969, p. 457-474. Zbl0295.17002MR308223
  2. [2] M. Batchelor, Graded manifolds and supermanifolds in Mathematical aspects of 
  3. Annales de l'Institut Henri Poincaré - Physique théorique 
  4. superspace (proc. Hamburg), ed. C. J. S. Clarke, A. Rosenblum and H. J. Seifert, Reidel, Dordrecht, 1981. 
  5. [3] L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics. Rev. of modern phys., V. 47, 1975, p. 573-603. Zbl0557.17004MR438925
  6. [4] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974; English Translation : Enveloping algebras, North Holland, Amsterdam, 1977. Zbl0308.17007MR498737
  7. [5] R. Hartshorne, Algebraic Geometry. G. T. M.52Springer, New York, Berlin, Heidelberg, 1977. Zbl0367.14001MR463157
  8. [6] J.E. Humphreys, Introduction to Lie algebras and representation theorie. G. T. M.9 Third rev. ed. Springer, New York, Berlin, Heidelberg, 1970. Zbl0254.17004
  9. [7] B. Kostant, Graded manifolds, graded Lie theory, and prequantisation in Differential geometric methods in mathematical physics (proc. Bonn, 1975), p. 177-306, L. N. S.570, Springer, New York, Berlin, Heidelberg, 1977. Zbl0358.53024MR580292
  10. [8] D. Leites, Introduction to the theory of supermanifolds. Russian math. surveys, V. 35, p. 1-64. Zbl0462.58002MR565567
  11. [9] A. Rogers, Aspects of the geometrical approach to supermanifolds in Mathematical aspects of superspace (proc. Hamburg), ed. C. J. S. Clarke, A. Rosenblum and H. J. Seifert, Reidel, Dordrecht, 1981. MR773081
  12. [10] A. Salam and J. Strathdee, Nucl. Phys., V. B 76, 1974, p. 477. MR356737
  13. [11] A. Salam and J. Strathdee, Phys. Rev., V. D 11, 1974, p. 1521. MR408630
  14. [12] M.F. Sohnius, Introducing supersymmetry. Phys. reports, V. 128, 1985, p. 2-3. MR811842
  15. [13] M. Sweedler, Hopf algebras. Benjamin, New York, 1969. Zbl0194.32901MR252485
  16. [14] B. De Witt, Supermanifolds, Cambridge University Press, Cambridge, 1984. Zbl0551.53002

NotesEmbed ?

top

You must be logged in to post comments.