Tensor fields defining a tangent bundle structure

Sergio de Filippo; Giovanni Landi; Giuseppe Marmo; Gaetano Vilasi

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 2, page 205-218
  • ISSN: 0246-0211

How to cite

top

de Filippo, Sergio, et al. "Tensor fields defining a tangent bundle structure." Annales de l'I.H.P. Physique théorique 50.2 (1989): 205-218. <http://eudml.org/doc/76444>.

@article{deFilippo1989,
author = {de Filippo, Sergio, Landi, Giovanni, Marmo, Giuseppe, Vilasi, Gaetano},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {manifold; tangent bundle structure; constrained Lagrangian dynamics; phase space},
language = {eng},
number = {2},
pages = {205-218},
publisher = {Gauthier-Villars},
title = {Tensor fields defining a tangent bundle structure},
url = {http://eudml.org/doc/76444},
volume = {50},
year = {1989},
}

TY - JOUR
AU - de Filippo, Sergio
AU - Landi, Giovanni
AU - Marmo, Giuseppe
AU - Vilasi, Gaetano
TI - Tensor fields defining a tangent bundle structure
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 205
EP - 218
LA - eng
KW - manifold; tangent bundle structure; constrained Lagrangian dynamics; phase space
UR - http://eudml.org/doc/76444
ER -

References

top
  1. [1] C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill. N. Y. 1980. L.D. Faddeev and A.A. Slavnov, Gauge Fields. Introduction to Quantum Theory, Benjamin/Cummings, London, 1980. MR585517
  2. B.S. De Witt, Quantum Theory of Gravity I: The Canonical Theory. Phys. Rev., t. 160, 1967, p. 1113. Zbl0158.46504
  3. B.S. De Witt, Quantum Theory of Gravity II; The manifestely Covariant Theory. Phys. Rev., t. 162, 1967, p. 1195-1239. Zbl0161.46501
  4. B.S. De Witt, Quantum Theory of Gravity III ; Applications of Covariant Theory. Phys. Rev., t. 162, 1967, p. 1239-1256. Zbl0161.46501
  5. [2] P.A.M. Dirac, Lectures on Quantum Mechanics. Belfer Graduate School of Science Monographs Series n. 2, N.Y. 1964. 
  6. E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective. Wiley and Sons, N. Y. 1974. Zbl0329.70001MR434047
  7. A. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian Systems. Accademia Nazionale dei LinceiRoma1976. 
  8. [3] L.D. Faddeev, Feynman Integral for Singular Lagrangian. Theor. Math. Phys., t. 1, 1970, p. 1. MR465005
  9. [4] R. Abraham and J. Marsden, Foundations of Mechanics. BenjaminReading, Massachussets, 1978. Zbl0393.70001MR515141
  10. [5] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Symmetry and Reduction of Dynamical Systems. Wiley and Sons, N. Y.1985. Zbl0592.58031MR818988
  11. P. Libermann and C.M. Marle, Symplectic Geometry and analitical Mechanics. Zbl0643.53002
  12. D. ReidelDordrecht, 1987. 
  13. K. Yano and S. Ishimara, Tangent and Cotangent Bundles. Marcel Dekker, 1973. Zbl0262.53024
  14. M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics. J. Phys., t. A16, 1983, p. 3755-3772. Zbl0536.58004MR727054
  15. [6] G. Marmo, N. Mukunda and J. Samuel, Dynamics and Symmetry for Constrained Systems; A Geometrical Analysis. La Rivista del Nuovo Cimento, t. 6, 1983, p. 2. MR729476
  16. J. Gotay, J. Nester and G. Hinds, Presymplectic Manifolds and the Dirac-Bergman Theory of Constraints. J. Math. Phys., t. 19, 1978, p. 2388. Zbl0418.58010MR506712
  17. J. Gotay and J. Nester, Presymplectic Lagrangian Systems I: The Constraint Algorithm and the Equivalence Theorem. Ann. Inst. H. Poincaré, t. 30A, 1979, p. 129-142. Zbl0414.58015MR535369
  18. J. Gotay and J. Nester, The Second Order Equation Problem. Ann. Inst. H. Poincaré, t. 32A, 1980, p. 1-13. Zbl0453.58016
  19. [7] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle. Naples Preprint, 1987. Zbl1211.58008MR1050526
  20. H.P. Kunzle, Canonical Dynamics of Spinning Particles in Gravitational and Electromagnetic Fields. J. Math. Phys., t. 13, 1972, p. 739-744. Zbl0232.70018MR299139
  21. F. Cantijn, J.F. Carinena, M. Crampin and L.A. Ibort, Reduction of degenerate Lagrangian Systems. J. Geom. Phys., t. 3, 1986, p. 3. Zbl0621.58020MR894631
  22. [8] A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge Symmetries and Fibre Bundles. Lecture Notes in Physics, 1988, p. 188. Zbl0525.53065
  23. [9] P. Tondeur, Introduction to Lie Groups and Transformation Group. Lecture Notes in Math., n° 7Springer Verlag, 1969. Zbl0198.05001
  24. [10] T. Nagano, 1-Forms With the Exterior derivative of Maximal Rank. J. Differential Geometry, t. 2, 1968, p. 253-264. Zbl0172.46903MR239526
  25. [11] J. Klein, Structures symplectiques ou J-symplectiques homogènes sur l'espace tangent à une variété. Sympos. Math., t. 14, 1974, p. 181-192. Zbl0306.53037MR388449
  26. J. Klein, Proc. IUTAM-ISIMM symposium on modern developments in analytical mechanics. S. Benenti, M. Francaviglia and A. Lichnerowicz eds. Pitagora (Bologna1984). 
  27. [12] M. Crampin, Defining Euler-Lagrange Fields in Terms of Almost Tangent Structures. Phys. Lett., t. 95A, 1983, p. 466-468. MR708702
  28. [13] M. Crampin and G. Thompson, Affine Bundles and Integrable Almost Tangent Structures. Math. Proc. Camb. Phil. Soc., t. 98, 1985, p. 61-71. Zbl0572.53031MR789719

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.