Tensor fields defining a tangent bundle structure
Sergio de Filippo; Giovanni Landi; Giuseppe Marmo; Gaetano Vilasi
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 50, Issue: 2, page 205-218
- ISSN: 0246-0211
Access Full Article
topHow to cite
topde Filippo, Sergio, et al. "Tensor fields defining a tangent bundle structure." Annales de l'I.H.P. Physique théorique 50.2 (1989): 205-218. <http://eudml.org/doc/76444>.
@article{deFilippo1989,
author = {de Filippo, Sergio, Landi, Giovanni, Marmo, Giuseppe, Vilasi, Gaetano},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {manifold; tangent bundle structure; constrained Lagrangian dynamics; phase space},
language = {eng},
number = {2},
pages = {205-218},
publisher = {Gauthier-Villars},
title = {Tensor fields defining a tangent bundle structure},
url = {http://eudml.org/doc/76444},
volume = {50},
year = {1989},
}
TY - JOUR
AU - de Filippo, Sergio
AU - Landi, Giovanni
AU - Marmo, Giuseppe
AU - Vilasi, Gaetano
TI - Tensor fields defining a tangent bundle structure
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 205
EP - 218
LA - eng
KW - manifold; tangent bundle structure; constrained Lagrangian dynamics; phase space
UR - http://eudml.org/doc/76444
ER -
References
top- [1] C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill. N. Y. 1980. L.D. Faddeev and A.A. Slavnov, Gauge Fields. Introduction to Quantum Theory, Benjamin/Cummings, London, 1980. MR585517
- B.S. De Witt, Quantum Theory of Gravity I: The Canonical Theory. Phys. Rev., t. 160, 1967, p. 1113. Zbl0158.46504
- B.S. De Witt, Quantum Theory of Gravity II; The manifestely Covariant Theory. Phys. Rev., t. 162, 1967, p. 1195-1239. Zbl0161.46501
- B.S. De Witt, Quantum Theory of Gravity III ; Applications of Covariant Theory. Phys. Rev., t. 162, 1967, p. 1239-1256. Zbl0161.46501
- [2] P.A.M. Dirac, Lectures on Quantum Mechanics. Belfer Graduate School of Science Monographs Series n. 2, N.Y. 1964.
- E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective. Wiley and Sons, N. Y. 1974. Zbl0329.70001MR434047
- A. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian Systems. Accademia Nazionale dei LinceiRoma1976.
- [3] L.D. Faddeev, Feynman Integral for Singular Lagrangian. Theor. Math. Phys., t. 1, 1970, p. 1. MR465005
- [4] R. Abraham and J. Marsden, Foundations of Mechanics. BenjaminReading, Massachussets, 1978. Zbl0393.70001MR515141
- [5] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Symmetry and Reduction of Dynamical Systems. Wiley and Sons, N. Y.1985. Zbl0592.58031MR818988
- P. Libermann and C.M. Marle, Symplectic Geometry and analitical Mechanics. Zbl0643.53002
- D. ReidelDordrecht, 1987.
- K. Yano and S. Ishimara, Tangent and Cotangent Bundles. Marcel Dekker, 1973. Zbl0262.53024
- M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics. J. Phys., t. A16, 1983, p. 3755-3772. Zbl0536.58004MR727054
- [6] G. Marmo, N. Mukunda and J. Samuel, Dynamics and Symmetry for Constrained Systems; A Geometrical Analysis. La Rivista del Nuovo Cimento, t. 6, 1983, p. 2. MR729476
- J. Gotay, J. Nester and G. Hinds, Presymplectic Manifolds and the Dirac-Bergman Theory of Constraints. J. Math. Phys., t. 19, 1978, p. 2388. Zbl0418.58010MR506712
- J. Gotay and J. Nester, Presymplectic Lagrangian Systems I: The Constraint Algorithm and the Equivalence Theorem. Ann. Inst. H. Poincaré, t. 30A, 1979, p. 129-142. Zbl0414.58015MR535369
- J. Gotay and J. Nester, The Second Order Equation Problem. Ann. Inst. H. Poincaré, t. 32A, 1980, p. 1-13. Zbl0453.58016
- [7] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle. Naples Preprint, 1987. Zbl1211.58008MR1050526
- H.P. Kunzle, Canonical Dynamics of Spinning Particles in Gravitational and Electromagnetic Fields. J. Math. Phys., t. 13, 1972, p. 739-744. Zbl0232.70018MR299139
- F. Cantijn, J.F. Carinena, M. Crampin and L.A. Ibort, Reduction of degenerate Lagrangian Systems. J. Geom. Phys., t. 3, 1986, p. 3. Zbl0621.58020MR894631
- [8] A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge Symmetries and Fibre Bundles. Lecture Notes in Physics, 1988, p. 188. Zbl0525.53065
- [9] P. Tondeur, Introduction to Lie Groups and Transformation Group. Lecture Notes in Math., n° 7Springer Verlag, 1969. Zbl0198.05001
- [10] T. Nagano, 1-Forms With the Exterior derivative of Maximal Rank. J. Differential Geometry, t. 2, 1968, p. 253-264. Zbl0172.46903MR239526
- [11] J. Klein, Structures symplectiques ou J-symplectiques homogènes sur l'espace tangent à une variété. Sympos. Math., t. 14, 1974, p. 181-192. Zbl0306.53037MR388449
- J. Klein, Proc. IUTAM-ISIMM symposium on modern developments in analytical mechanics. S. Benenti, M. Francaviglia and A. Lichnerowicz eds. Pitagora (Bologna1984).
- [12] M. Crampin, Defining Euler-Lagrange Fields in Terms of Almost Tangent Structures. Phys. Lett., t. 95A, 1983, p. 466-468. MR708702
- [13] M. Crampin and G. Thompson, Affine Bundles and Integrable Almost Tangent Structures. Math. Proc. Camb. Phil. Soc., t. 98, 1985, p. 61-71. Zbl0572.53031MR789719
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.