Essential selfadjointness of the Weyl quantized relativistic hamiltonian

Takashi Ichinose

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 51, Issue: 3, page 265-297
  • ISSN: 0246-0211

How to cite

top

Ichinose, Takashi. "Essential selfadjointness of the Weyl quantized relativistic hamiltonian." Annales de l'I.H.P. Physique théorique 51.3 (1989): 265-297. <http://eudml.org/doc/76468>.

@article{Ichinose1989,
author = {Ichinose, Takashi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Weyl quantized relativistic Hamiltonian; essentially selfadjoint},
language = {eng},
number = {3},
pages = {265-297},
publisher = {Gauthier-Villars},
title = {Essential selfadjointness of the Weyl quantized relativistic hamiltonian},
url = {http://eudml.org/doc/76468},
volume = {51},
year = {1989},
}

TY - JOUR
AU - Ichinose, Takashi
TI - Essential selfadjointness of the Weyl quantized relativistic hamiltonian
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 3
SP - 265
EP - 297
LA - eng
KW - Weyl quantized relativistic Hamiltonian; essentially selfadjoint
UR - http://eudml.org/doc/76468
ER -

References

top
  1. [1] F.A. Berezin and M.A. Šubin, Symbols of Operators and Quantization, Coll. Math. Soc. Janos Bolyai5, Hilbert Space Operators, 21-52, Tihany, 1970. Zbl0262.47036MR366281
  2. [2] I. Daubechies, One-Electron Molecules with Relativistic Kinetic Energy: Properties of the Discrete Spectrum, Commun. Math. Phys., Vol. 94, 1984, pp. 523-535. MR763750
  3. [3] I. Daubechies and E.H. Lieb, One Electron Relativistic Molecules with Coulomb Interaction, Commun. Math. Phys., Vol. 90, 1983, pp. 497-510. Zbl0946.81522MR719430
  4. [4] A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. Zbl0052.29502
  5. [5] C. Fefferman and R. De La Llave, Relativistic Stability of Matter-I, Rev. Mat. Iberoamericana, Vol. 2, 1986, pp. 119-213. Zbl0602.58015MR864658
  6. [6] I.W. Herbst, Spectral Theory of the Operator (p2+m2)1/2-Ze2/r. Commun. Math. Phys., Vol. 53, 1977, pp. 285-294; Errata, Ibid., Vol. 55, 1977, p. 316. Zbl0375.35047MR436854
  7. [7] H. Hess, R. Schrader and D.A. Uhlenbrock, Domination of Semigroups and Generalization of Kato's Inequality, Duke Math. J., Vol. 44, 1977, pp. 893-904. Zbl0379.47028MR458243
  8. [8] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, Berlin-Heidelberg-New York-Tokyo, 1985. Zbl0601.35001MR781536
  9. [9] T. Ichinose, The Nonrelativistic Limit Problem for a Relativistic Spinless Particle in an Electromagnetic Field, J. Functional Analysis, 73, 1987, pp. 233-257. Zbl0618.46063MR899650
  10. [10] T. Ichinose, Path Integral for a Weyl Quantized Relativistic Hamiltonian and the Nonrelativistic Limit Problem, in Differential Equations and Mathematical Physics; Lecture Notes in Mathematics, Springer, No. 1285, 1987, pp. 205-210. Zbl0623.34007MR921270
  11. [11] T. Ichinose, Kato's Inequality and Essential Selfadjointness for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., 64A, 1988, pp. 367-369. Zbl0705.35116MR979947
  12. [12] T. Ichinose and H. Tamura, Imaginary-Time Path Integral for a Relativistic Spinless Particle in an Electromagnetic Field, Commun. Math. Phys., Vol. 105, 1986, pp. 239- 257 ; Path Integral for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., Vol. 62A, 1986, pp. 91-93. Zbl0606.60060MR849207
  13. [13] T. Ikebe and T. Kato, Uniqueness of the Self-Adjoint Extension of Singular Elliptic Differential Operators, Arch. Rat. Mech. Anal., Vol. 9, 1962, pp. 77-92. Zbl0103.31801MR142894
  14. [14] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam, Tokyo, 1981. Zbl0495.60005MR637061
  15. [15] N. Ikeda and S. Watanabe, On Some Relations Between the Harmonic Measure and the Lévy Measure for a Certain Class of Markov Processes, J. Math. Kyoto Univ., Vol. 2, 1962, pp. 79-95. Zbl0118.13401MR142153
  16. [16] T. Kato, Schrödinger Operators with Singular Potentials, Israel J. Math., Vol. 13, 1972, pp. 135-148. Zbl0246.35025MR333833
  17. [17] H. Kumano-Go, Pseudo-Differential Operators, The M.I.T. Press, Cambridge, Massachusetts, 1981. 
  18. [18] M.M. Mizrahi, The Weyl Correspondence and Path Integrals, J. Math. Phys., Vol. 16, 1975, pp.2201-2206. MR391805
  19. [19] M. Nagase, The Lp-Boundedness of Pseudo-Differential Operators with Non-Regular Symbols, Comm. in P.D.E., Vol. 2, 1977, pp. 1045-1061. Zbl0397.35071MR470758
  20. [20] M. Nagase and T. Umeda, On the Essential Self-Adjointness of Quantum Hamiltonians of Relativistic Particles in Magnetic Fields, Sci. Rep. Col. Gen. Educ. Osaka Univ., Vol. 36, 1987, pp. 1-6. Zbl0649.47038MR931756
  21. [21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1975. Zbl0401.47001MR751959
  22. [22] M.A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer, Berlin- Heidelberg, 1987. Zbl0616.47040MR883081
  23. [23] B. Simon, An Abstract Kato's Inequality for Generators of Positivity Preserving Semi-groups, Indiana Univ. Math. J., Vol. 26, 1977, pp. 1067-1073. Zbl0389.47021MR461209
  24. [24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501MR290095
  25. [25] R.A. Weder, Spectral Analysis of Pseudodifferential Operators, J. Functional Analysis, 20, 1975, pp. 319-337. Zbl0317.47035MR402547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.