Essential selfadjointness of the Weyl quantized relativistic hamiltonian
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 51, Issue: 3, page 265-297
- ISSN: 0246-0211
Access Full Article
topHow to cite
topIchinose, Takashi. "Essential selfadjointness of the Weyl quantized relativistic hamiltonian." Annales de l'I.H.P. Physique théorique 51.3 (1989): 265-297. <http://eudml.org/doc/76468>.
@article{Ichinose1989,
author = {Ichinose, Takashi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Weyl quantized relativistic Hamiltonian; essentially selfadjoint},
language = {eng},
number = {3},
pages = {265-297},
publisher = {Gauthier-Villars},
title = {Essential selfadjointness of the Weyl quantized relativistic hamiltonian},
url = {http://eudml.org/doc/76468},
volume = {51},
year = {1989},
}
TY - JOUR
AU - Ichinose, Takashi
TI - Essential selfadjointness of the Weyl quantized relativistic hamiltonian
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 3
SP - 265
EP - 297
LA - eng
KW - Weyl quantized relativistic Hamiltonian; essentially selfadjoint
UR - http://eudml.org/doc/76468
ER -
References
top- [1] F.A. Berezin and M.A. Šubin, Symbols of Operators and Quantization, Coll. Math. Soc. Janos Bolyai5, Hilbert Space Operators, 21-52, Tihany, 1970. Zbl0262.47036MR366281
- [2] I. Daubechies, One-Electron Molecules with Relativistic Kinetic Energy: Properties of the Discrete Spectrum, Commun. Math. Phys., Vol. 94, 1984, pp. 523-535. MR763750
- [3] I. Daubechies and E.H. Lieb, One Electron Relativistic Molecules with Coulomb Interaction, Commun. Math. Phys., Vol. 90, 1983, pp. 497-510. Zbl0946.81522MR719430
- [4] A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. Zbl0052.29502
- [5] C. Fefferman and R. De La Llave, Relativistic Stability of Matter-I, Rev. Mat. Iberoamericana, Vol. 2, 1986, pp. 119-213. Zbl0602.58015MR864658
- [6] I.W. Herbst, Spectral Theory of the Operator (p2+m2)1/2-Ze2/r. Commun. Math. Phys., Vol. 53, 1977, pp. 285-294; Errata, Ibid., Vol. 55, 1977, p. 316. Zbl0375.35047MR436854
- [7] H. Hess, R. Schrader and D.A. Uhlenbrock, Domination of Semigroups and Generalization of Kato's Inequality, Duke Math. J., Vol. 44, 1977, pp. 893-904. Zbl0379.47028MR458243
- [8] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, Berlin-Heidelberg-New York-Tokyo, 1985. Zbl0601.35001MR781536
- [9] T. Ichinose, The Nonrelativistic Limit Problem for a Relativistic Spinless Particle in an Electromagnetic Field, J. Functional Analysis, 73, 1987, pp. 233-257. Zbl0618.46063MR899650
- [10] T. Ichinose, Path Integral for a Weyl Quantized Relativistic Hamiltonian and the Nonrelativistic Limit Problem, in Differential Equations and Mathematical Physics; Lecture Notes in Mathematics, Springer, No. 1285, 1987, pp. 205-210. Zbl0623.34007MR921270
- [11] T. Ichinose, Kato's Inequality and Essential Selfadjointness for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., 64A, 1988, pp. 367-369. Zbl0705.35116MR979947
- [12] T. Ichinose and H. Tamura, Imaginary-Time Path Integral for a Relativistic Spinless Particle in an Electromagnetic Field, Commun. Math. Phys., Vol. 105, 1986, pp. 239- 257 ; Path Integral for the Weyl Quantized Relativistic Hamiltonian, Proc. Japan Acad., Vol. 62A, 1986, pp. 91-93. Zbl0606.60060MR849207
- [13] T. Ikebe and T. Kato, Uniqueness of the Self-Adjoint Extension of Singular Elliptic Differential Operators, Arch. Rat. Mech. Anal., Vol. 9, 1962, pp. 77-92. Zbl0103.31801MR142894
- [14] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam, Tokyo, 1981. Zbl0495.60005MR637061
- [15] N. Ikeda and S. Watanabe, On Some Relations Between the Harmonic Measure and the Lévy Measure for a Certain Class of Markov Processes, J. Math. Kyoto Univ., Vol. 2, 1962, pp. 79-95. Zbl0118.13401MR142153
- [16] T. Kato, Schrödinger Operators with Singular Potentials, Israel J. Math., Vol. 13, 1972, pp. 135-148. Zbl0246.35025MR333833
- [17] H. Kumano-Go, Pseudo-Differential Operators, The M.I.T. Press, Cambridge, Massachusetts, 1981.
- [18] M.M. Mizrahi, The Weyl Correspondence and Path Integrals, J. Math. Phys., Vol. 16, 1975, pp.2201-2206. MR391805
- [19] M. Nagase, The Lp-Boundedness of Pseudo-Differential Operators with Non-Regular Symbols, Comm. in P.D.E., Vol. 2, 1977, pp. 1045-1061. Zbl0397.35071MR470758
- [20] M. Nagase and T. Umeda, On the Essential Self-Adjointness of Quantum Hamiltonians of Relativistic Particles in Magnetic Fields, Sci. Rep. Col. Gen. Educ. Osaka Univ., Vol. 36, 1987, pp. 1-6. Zbl0649.47038MR931756
- [21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1975. Zbl0401.47001MR751959
- [22] M.A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer, Berlin- Heidelberg, 1987. Zbl0616.47040MR883081
- [23] B. Simon, An Abstract Kato's Inequality for Generators of Positivity Preserving Semi-groups, Indiana Univ. Math. J., Vol. 26, 1977, pp. 1067-1073. Zbl0389.47021MR461209
- [24] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501MR290095
- [25] R.A. Weder, Spectral Analysis of Pseudodifferential Operators, J. Functional Analysis, 20, 1975, pp. 319-337. Zbl0317.47035MR402547
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.