The theory of Kaluza-Klein-Jordan-Thiry revisited

R. Coquereaux; G. Esposito-Farese

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 52, Issue: 2, page 113-150
  • ISSN: 0246-0211

How to cite

top

Coquereaux, R., and Esposito-Farese, G.. "The theory of Kaluza-Klein-Jordan-Thiry revisited." Annales de l'I.H.P. Physique théorique 52.2 (1990): 113-150. <http://eudml.org/doc/76480>.

@article{Coquereaux1990,
author = {Coquereaux, R., Esposito-Farese, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Kaluza-Klein theory; field equations of gravity; electromagnetism; Jordan-Thiry scalar field; description of particles},
language = {eng},
number = {2},
pages = {113-150},
publisher = {Gauthier-Villars},
title = {The theory of Kaluza-Klein-Jordan-Thiry revisited},
url = {http://eudml.org/doc/76480},
volume = {52},
year = {1990},
}

TY - JOUR
AU - Coquereaux, R.
AU - Esposito-Farese, G.
TI - The theory of Kaluza-Klein-Jordan-Thiry revisited
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 52
IS - 2
SP - 113
EP - 150
LA - eng
KW - Kaluza-Klein theory; field equations of gravity; electromagnetism; Jordan-Thiry scalar field; description of particles
UR - http://eudml.org/doc/76480
ER -

References

top
  1. [1] Th. Kaluza, Zum Unitätsproblem der Physik, Sitz. Preuss. Akad. Wiss.1921, p. 966; one can find an English translation in: Unified Fields Theories of More Than 4 Dimensions, World Scientific, Singapore, 1983. JFM48.1032.03
  2. [2] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys., Vol. 37, 1926, p. 895; one can find an English translation in: Unified Field Theories of More Than 4 Dimensions, World Scientific, Singapore, 1983. JFM52.0970.09
  3. [3] P. Jordan, Zur projektiven Relativitätstheorie, Nachr. Akad. Wiss. Göttingen, 1945, p. 74. Zbl0063.03078MR22475
  4. [4] Y. Thiry, Étude mathématique des équations d'une théorie à 15 variables de champ, Thèse, Paris, 1950, p. 21 and J. Math. Pure Appl., 9e série, T. 30, 1951, p. 275. Zbl0045.45403MR46790
  5. [5] E. Witten, Search for a Realistic Kaluza-Klein Theory, Nucl. Phys. B, Vol. 186, 1981, p. 412. Zbl1156.83330MR624244
  6. [6] A. Salam and J. Strathdee, On Kaluza-Klein Theory, Ann. Phys., Vol. 141, 1982, p. 316. MR673985
  7. [7] P. Van Nieuwenhuizen, An Introduction to Simple Supergravity and the Kaluza-Klein Program, Les Houches, Session XL, 1983, pp. 823-932. Zbl0594.53055MR830250
  8. [8] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rep., Vol. 130, No. 1, 1986, pp. 1-142. MR822171
  9. [9] M.J. Duff, Kaluza-Klein Theories and Superstrings, Les Hatches, Session XLIV, 1985, pp. 819-903. 
  10. [10] P. Jordan, Schwerkraft und Weltall, Fried, Vieweg & Sohn, Braunschweig, 1955. Zbl0065.20703
  11. [11] A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris, 1955. Zbl0065.20704
  12. [12] M.-A. Tonnelat, Les théories unitaires de l'électromagnétisme et de la gravitation, Gauthier-Villars, Paris, 1965. Zbl0142.24004MR208981
  13. [13] K. Just, The Motion of Mercury According to the Theory of Thiry and Lichnerowicz, Z. Nat., Vol. 14, 1959, p. 751. 
  14. [14] F. Hennequin, Étude mathématique des approximations en Relativité Générale et en théorie unitaire de Jordan-Thiry, Thèse, Paris, 1956 and Gauthier-Villars, 1958, p. 46. MR121211
  15. [15] H. Leutwyler, Sur une modification des théories pentadimensionnelles destinée à éviter certaines difficultés de la théorie de Jordan-Thiry, C. R. Acad. Sci. Paris, T. 251, 1960, pp. 2292-2294. Zbl0096.22502MR118479
  16. [16] P. Pigeaud, Ann. Inst. Fourier, Vol. 13, 1963, pp. 181-217 and Rep. Math. Phys., Vol. 14, 1978. Zbl0122.45701MR151295
  17. [17] E. Schmutzer, Teubner, Verlag, Leipzig, 1968, Chap. X. 
  18. [18] R. Coquereaux and A. Jadczyk, Riemannian Geometry, Fiber Bundles, Kaluza-Klein Theories and All That, World Scientific, Lect. Notes Phys., 1988 and Consistency of the G-Invariant Kaluza-Klein Scheme, Nucl. Phys. B, Vol. 276, 1986, pp. 617-628. Zbl0734.53002MR856538
  19. [19] W. Pauli, Ann. Physik, Vol. 18, 1933, p. 305. Zbl0007.42506
  20. [20] M. Fierz, Helv. Phys. Acta, Vol. 29, 1956, pp. 128-134. Zbl0071.22007MR80000
  21. [21] D. Brill, Review of Jordan's Extended Theory of Gravitation in Proceedings of the International School of Physics Enrico Fermi, XX; Evidence for Gravitational Theories, 1962, p. 50. 
  22. [22] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973, p. 69. Zbl0265.53054MR424186
  23. [23] S. Weinberg, Gravitation and Cosmology, Wiley, 1972. 
  24. [24] Result quoted in: I.I. Shapiro, Ch.C. Counselman and R.W. King, Verification of the Principle of Equivalence for Massive Bodies, Phys. Rev. Lett., Vol. 36, No. 11, 1976, pp. 555-558. See also the previous-result (1.005±0.007) in I.I. Shapiro, G.H. Pettengill, M.E. Ash, R.P. Ingalls, D.B. Campbell and R.B. Dyce, Mercury's Perihelion Advance: Determination by Radar, Phys. Rev. Lett., Vol. 28, 1972, pp. 1594- 1597. 
  25. [25] C.M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge, 1981. MR778909
  26. [26] Ch.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, New York, 1973. MR418833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.