Electrodynamics in Robertson-Walker spacetimes

Birgitta Alertz

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 53, Issue: 3, page 319-342
  • ISSN: 0246-0211

How to cite

top

Alertz, Birgitta. "Electrodynamics in Robertson-Walker spacetimes." Annales de l'I.H.P. Physique théorique 53.3 (1990): 319-342. <http://eudml.org/doc/76507>.

@article{Alertz1990,
author = {Alertz, Birgitta},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {electromagnetic eigenmodes; Einstein Universe; Maxwell equations; integral kernels; dipoles; multipoles},
language = {eng},
number = {3},
pages = {319-342},
publisher = {Gauthier-Villars},
title = {Electrodynamics in Robertson-Walker spacetimes},
url = {http://eudml.org/doc/76507},
volume = {53},
year = {1990},
}

TY - JOUR
AU - Alertz, Birgitta
TI - Electrodynamics in Robertson-Walker spacetimes
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 3
SP - 319
EP - 342
LA - eng
KW - electromagnetic eigenmodes; Einstein Universe; Maxwell equations; integral kernels; dipoles; multipoles
UR - http://eudml.org/doc/76507
ER -

References

top
  1. [1] E. Schrödinger, Maxwell's and Dirac's Equations in the Expanding Universe, Proc. R.I.A., Vol. 46, Sec. A, 1940, pp.25-47. Zbl0061.47102
  2. [2] D. Kramer, Gruppenstruktur und Feldgleichungen im Einstein Universum, Act. Phys. Pol., Vol. B4, 1973, pp. 11-20. MR386580
  3. [3] H. Stephani, Greensche Funktionen der Elektrodynamik in geschlossenen Kosmen, Act. Phys. Pol., Vol. B3, 1972, pp.427-436. 
  4. [4] M. Kohler, Beiträge zum kosmologischen Problem und zur Lichtausbreitung in Schwerefeldern, Ann. Physik, Vol. 16, 1933, pp. 129-161. Zbl0006.23106
  5. [5] F.G. Friedlander, The Wave Equation on a Curved Space-Time, Cambridge, The Univ. Press, 1975. Zbl0316.53021MR460898
  6. [6] J.D. Talman, Special Functions, W. A. Benjamin, New York, 1968. Zbl0197.04301MR239154
  7. [7] C. Müller, Spherical harmonics, Lect. Notes Math., Vol. 17, Springer, Berlin, 1966. Zbl0138.05101MR199449
  8. [8] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne, J. Math. Pure Appl., Vol. 54, 1975, pp. 259-284. Zbl0316.53036MR454884
  9. [9] A. Ikeda and Y. Taniguchi, Spectra and Eigenforms of the Laplacien on Sn and Pn (C), Osaka J. Math., Vol. 15, 1978, pp. 515-546. Zbl0392.53033MR510492
  10. [10] R.T. Jantzen, Tensor Harmonics on the 3-Sphere, J. Math. Phys., Vol. 19, (5), 1978, pp.1163-1172. Zbl0392.22014MR475581
  11. [11] J. Dodziuk, L2 Harmonic Forms on Rotationally symmetric Riemannian Manifolds, Proc. Am. Math. Soc., Vol. 77, (3), 1979, pp. 395-400. Zbl0423.58002MR545603
  12. [12] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, III, 1971. Zbl0241.58001MR295244
  13. [13] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. Zbl0521.35001MR705278
  14. [14] L. Schwartz, Théorie des distributions, Herrmann, Paris, 1966. MR209834
  15. [15] E. Kamke, Differentialgleichungen: Lösungen und Lösungsmethoden, Teubner, Stuttgart, 1983. MR466672
  16. [16] M. Bander and C. Itzykson, Group Theory and the Hydrogen Atom (I), Rev. Mod. Phys., Vol. 38, (2), 1966, pp. 330-345. MR205613
  17. [17] S. Iyanaga and Y. Kawada Eds, Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, Mass., 1980. Zbl0444.00028MR591028
  18. [18] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, 2 ed., Whiley, New York, 1962. Zbl0099.29504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.