Invariant subspaces for the Schrödinger evolution group
Annales de l'I.H.P. Physique théorique (1991)
- Volume: 54, Issue: 1, page 43-57
- ISSN: 0246-0211
Access Full Article
topHow to cite
topOzawa, Tohru. "Invariant subspaces for the Schrödinger evolution group." Annales de l'I.H.P. Physique théorique 54.1 (1991): 43-57. <http://eudml.org/doc/76521>.
@article{Ozawa1991,
author = {Ozawa, Tohru},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger equation; invariance; Schrödinger evolution group},
language = {eng},
number = {1},
pages = {43-57},
publisher = {Gauthier-Villars},
title = {Invariant subspaces for the Schrödinger evolution group},
url = {http://eudml.org/doc/76521},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Ozawa, Tohru
TI - Invariant subspaces for the Schrödinger evolution group
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 1
SP - 43
EP - 57
LA - eng
KW - Schrödinger equation; invariance; Schrödinger evolution group
UR - http://eudml.org/doc/76521
ER -
References
top- [1] W.O. Amrein, M.B. Cibils and K.B. Sinha, Configuration Space Properties of S-Matrix and Time Delay in Potential Scattering, Ann. Inst. Henri Poincare, Physique Theorique, Vol. 47, 1987, pp. 367-382. Zbl0657.35101MR933683
- [2] M. Arai, Absolute Continuity of Hamilton Operatorswith Repulsive Potentials, Publ. RIMS, Kyoto Univ., Vol. 7, 1971, pp. 621-635. Zbl0249.47005MR318975
- [3] W.G. Faris and R.B. Lavine, Commutators and Self-Adjointness of Hamilton Operators, Commun. Math. Phys., Vol. 35, 1974, pp. 39-48. Zbl0287.47004MR391794
- [4] J. Fröhlich, Application of Commutator Theorems to the Integration Representations of Lie Algebras and Commutation Relations, Commun. Math. Phys., Vol. 54, 1977, pp. 135-150. Zbl0374.46065MR473909
- [5] J. Ginibre and G. Velo, On a Class of Nonlinear Schrödinger Equations I. The Cauchy Problem, General Case, J. Funct. Anal., Vol. 32, 1979, pp. 1-32. Zbl0396.35028MR533218
- [6] N. Hayashi and T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. Funct. Anal., Vol. 85, 1989, pp. 307-348. Zbl0681.35079MR1012208
- [7] N. Hayashi and T. Ozawa, Time Decay for Some Schrödinger Equations, Math. Z., Vol. 200, 1989, pp. 467-483. Zbl0646.35020MR987581
- [8] I. Herbst, Spectral Theory of the Operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys. Vol. 53, 1977, pp. 285-294. Zbl0375.35047MR436854
- [9] W. Hunziker, On the Space-Time Behavior of Schrödinger Wavefunctions, J. Math. Phys., Vol. 7, 1966, pp. 300-304. Zbl0151.43801MR193939
- [10] C.S. Lin, Interpolation Inequalities with Weights, Comm. PDE. Vol. 11, 1986, pp. 1515- 1538. Zbl0635.46032MR864416
- [11] K. Masuda, A Unique Continuation Theorem for Solutions of the Schrödinger Equations, Proc. Japan Acad., Vol. 43, 1967, pp. 361-364. Zbl0153.42601MR222449
- [12] T. Ozawa, Remarks on the Space-Time Behavior of Scattering Solutions to the Schrödinger Equations, Publ. RIMS, Kyoto Univ., Vol. 23, 1987, pp. 479-486. Zbl0644.35078MR905022
- [13] T. Ozawa, New LP-Estimates for Solutions to the Schrödinger Equations and Time Asymptotic Behavior of Observables, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 521- 577. Zbl0702.35020MR1025065
- [14] C. Radin and B. Simon, Invariant Domains for the Time-Dependent Schrödinger Equation, J. Differ. Equations, Vol. 29, 1978, pp. 289-296. Zbl0351.34004MR502354
- [15] T. Schonbek, Decay of Solutions of Schrödinger Equations, Duke Math. J., Vol. 46, 1979, pp. 203-213. Zbl0413.35026MR523607
- [16] H. Tanabe, Equations of Evolution, Pitman, London, 1979. MR533824
- [17] T. Triebel, Spaces of Distributions with Weights. Multipliers in Lp-Spaces with Weights, Math. Nachr., Vol. 78, 1977, pp. 339-355. Zbl0376.46020MR472863
- [18] C.H. Wilcox, Uniform Asymptotic Wave Packets in the Quantum Theory of Scattering, J. Math. Phys., Vol. 6, 1965, pp. 611-620. Zbl0125.46005MR182798
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.