A natural graded Lie algebra sheaf over Riemann surfaces

Paolo Teofilatto

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 2, page 165-177
  • ISSN: 0246-0211

How to cite

top

Teofilatto, Paolo. "A natural graded Lie algebra sheaf over Riemann surfaces." Annales de l'I.H.P. Physique théorique 54.2 (1991): 165-177. <http://eudml.org/doc/76526>.

@article{Teofilatto1991,
author = {Teofilatto, Paolo},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {uniformization; super Riemann surfaces; moduli},
language = {eng},
number = {2},
pages = {165-177},
publisher = {Gauthier-Villars},
title = {A natural graded Lie algebra sheaf over Riemann surfaces},
url = {http://eudml.org/doc/76526},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Teofilatto, Paolo
TI - A natural graded Lie algebra sheaf over Riemann surfaces
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 165
EP - 177
LA - eng
KW - uniformization; super Riemann surfaces; moduli
UR - http://eudml.org/doc/76526
ER -

References

top
  1. [1] R. Gunning, Special Coordinate Covering of Riemann Surfaces, Math. Ann., Vol. 170, 1967, pp. 67-86. Zbl0144.33501MR207978
  2. [2] K. Kodaira and D. Spencer, On Deformations of Complex Analytic Structures, Ann. Math., Vol. 67, 1958, pp. 328-466. Zbl0128.16901MR112154
  3. [3] L. Bers, Simultaneous Uniformizations, Bull. Am. Math. Soc., Vol. 66, 1960, pp. 94-97. Zbl0090.05101MR111834
  4. [4] Yu.I. Manin, Critical Dimensions of the String Theories and the Dualizing Sheaf on the Moduli Space of (Super) Curves, Funct. Anal. Appl., Vol. 20, 1986, pp. 244-245. Zbl0639.14015MR868568
  5. [5] C. Le Brun and M. Rothstein, Moduli of Super Riemann Surfaces, Comm. Math. Phys., Vol. 117, 1988, p. 159. Zbl0662.58008MR946998
  6. [6] L. Crane and J. Rabin, Super Riemann Surfaces: Uniformization and Teichmüller Theory, Comm. Math. Phys., Vol. 113, 1988, p. 601. Zbl0659.30039MR923633
  7. [7] L. Hodgkin, A Direct Calculation of Super Teichmüller Space, Lett. Math. Phys., Vol. 14, 1987, p. 74. Zbl0627.58004MR901699
  8. [8] N. Hawley and M. Shiffer, Half Order Differential on Riemann Surfaces, Acta Math., Vol. 115, 1966, pp. 119-236. Zbl0136.06701MR190326
  9. [9] D. Leites, Seminars on Supermanifolds, NO 30 1988-n13, Matematiska institutionen, Stockholms, ISSN 0348-7652. 
  10. [10] L. Ahlforz, Lecture on Quasi Conformal Mappings, Van Nostrand Math. Studies, N 10, Princeton, 1966. 
  11. [11] P. Sipe, Roots of the Canonica Bundle Over the Universal Teichmüller Curve, Math. Ann., Vol. 260, 1982, pp. 67-92. Zbl0502.32017MR664367
  12. [12] G. Trautmann, Deformations of Sheaves and Bundles, Lect. Notes Math., Vol. 683, 1978, pp. 29-41. Zbl0388.32011MR517519
  13. [13] I. Kra, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mass., 1972. Zbl0253.30015MR357775
  14. [14] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, Berlin- Heidelberg-New York, 1966. Zbl0138.42001MR202713
  15. [15] R. Gunning, Riemann Surfaces and Generalized Theta Functions, Berlin, Heidelberg, New York, Springer, 1976. Zbl0341.14013MR457787
  16. [16] K. Gawedzki, Supersymmetries-Mathematics of Supergeometry, Ann. Inst. H. Poincaré, Sect. A., vol. XXVII, 1977, p. 355-366. Zbl0369.53061MR489701
  17. [17] G. Segal, Comm. Math. Phys., 80, 1981, p. 301. Zbl0495.22017MR626704
  18. [18] D. Friedan, in Supersymmetry, Supergravity and Superstrings 86, B. DE WITT ed., World Scientific, Singapore, 1986. MR851575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.