Hamiltonians with zero-range interactions supported by a brownian path

S. E. Cheremshantsev

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 1, page 1-25
  • ISSN: 0246-0211

How to cite

top

Cheremshantsev, S. E.. "Hamiltonians with zero-range interactions supported by a brownian path." Annales de l'I.H.P. Physique théorique 56.1 (1992): 1-25. <http://eudml.org/doc/76558>.

@article{Cheremshantsev1992,
author = {Cheremshantsev, S. E.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {measurable map; selfadjoint Hamiltonians; ultraviolet cut-off in Fourier- representation; Trotter-Kato theorem},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Gauthier-Villars},
title = {Hamiltonians with zero-range interactions supported by a brownian path},
url = {http://eudml.org/doc/76558},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Cheremshantsev, S. E.
TI - Hamiltonians with zero-range interactions supported by a brownian path
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 1
SP - 1
EP - 25
LA - eng
KW - measurable map; selfadjoint Hamiltonians; ultraviolet cut-off in Fourier- representation; Trotter-Kato theorem
UR - http://eudml.org/doc/76558
ER -

References

top
  1. [1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics. Springer-Verlag, New York, 1988. Zbl0679.46057MR926273
  2. [2] B.S. Pavlov, Boundary Conditions on Thin Manifolds and the Boundedness from Below of Three-Body Schroedinger Operator Wirh Pointwise Potential, Mat. Sbornik (in russian), Vol. 136 (178), No. 2 (6), 1988, pp. 163-177. Zbl0687.35064MR954922
  3. [3] A.S. Blagovestchenski and K.K. Lavrentiev, The Three-Dimensional Laplace Operator with the Boundary Condition on a line, Vestnik L.G.U. (in russian), No. 1, 1977, pp. 9-15. Zbl0346.35033
  4. [4] V.I. Slobodin, Boundary Problems for Elliptic Operators with Boundary Conditions on Smooth Manifolds of Arbitrary Dimension, Vestnik L.G. U. (in russian), No. 4, 1988, pp. 100-102. Zbl0696.35202MR987183
  5. [5] J.-P. Antoine, F. Gesztesy and J. Shabani, Exactly Solvable Models of Sphere Interactions in Quantum Mechanics, J. Phys., Vol. A 20, 1987, pp. 3687-3712. MR913638
  6. [6] A.N. Kochubei, Elliptic Operators with Boundary Conditions on a Subset of Measure Zero, Funct. Anal. Appl., Vol. 16, 1982, pp. 137-139. Zbl0506.35029MR659171
  7. [7] A. Grossmann, R. Hoegh-Krohn and M. Mebkhout, A Class of Explicitly Soluble, Many-Center Hamiltonians for One-Particle Quantum Mechanics in Two and Three Dimensions I., J. Math. Phys., Vol. 21, 1980, pp. 2376-2385. MR585589
  8. [8] S. Albeverio, S. Fenstad, R. Hoegh-Krohn and T. Lindstrom, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York-San Francisco-London, 1986. Zbl0605.60005MR859372
  9. [9] F.A. Berezin and L.D. Faddeev, A Remark on Schroedinger's Equation with a Singular Potential, Soviet. Math. Dokl., Vol. 2, 1961, pp. 372-375. Zbl0117.06601
  10. [10] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 2. Pitman, Boston-London-Melbourne, 1981. Zbl0467.47001
  11. [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Academic Press, New York-London, 1972. Zbl0242.46001MR493419

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.